
 IMP Series Motion Control Command Library User Manual

IMP Series

Motion Control Command Library

User Manual

 Version: V.2.01

Date: 2013.01

 http: //www.epcio.com.tw

http://www.epcio.com.tw/

 IMP Series Motion Control Command Library User Manual

1

Table of Contents

1. INTRODUCTION TO THE MOTION CONTROL COMMAND

LIBRARY . 3

2. MCCL FUNCTIONS . 5

2.1 Software Specifications . 5

2.2 Motion Axis Definition and the Maximum Number of

Combinable Control Cards . 6

2.2.1 Motion Axis Definition . 6

2.2.2 Maximum Number of Combinable Control Cards . 7

2.3 Command Library Operational Properties . 8

2.4 Mechanism、Encoder and Go Home Parameter Settings 13

2.4.1 Mechanism Parameters . 13

2.4.2 Encoder Parameters . 19

2.4.3 Go Home Parameters . 21

2.4.4 Group (Motion Group) Parameter Setting . 24

2.5 Initialize and Close the Motion Control Command Library . 28

2.5.1 Initializing the Motion Control Command Library 28

2.5.2 Close the Motion Control Command Library . 29

2.6 Motion Control . 30

2.6.1 Position System . 30

2.6.2 Basic Trajectory Planning . 31

2.6.3 Advanced Trajectory Planning . 35

2.6.4 Interpolation Time and Acceleration/Deceleration Time 40

2.6.5 System Status Check . 42

2.7 Position Control . 45

2.7.1 Closed Loop Proportional Integration Differentiation Forward

Feed Gain (PID+FF Gain) Setting . 45

2.7.2 In Position Confirmation . 45

2.7.3 Tracking Error . 49

2.7.4 Handling Posit ional Closed Loop Control Failure 51

2.7.5 Gear Backlash and Gap Compensation . 55

2.8 Go Home . 59

 IMP Series Motion Control Command Library User Manual

2

2.8.1 Go Home Mode Description . 59

2.8.2 Enabling Go Home . 69

2.9 Local I/O Control . 72

2.9.1 Input Connection Status . 72

2.9.2 Signal Output Control . 72

2.9.3 Input Signal Triggered Interrupt Service Routine 73

2.10 Encoder Control . 78

2.10.1 General Control . 78

2.10.2 Count Latch . 78

2.10.3 Encoder Count Triggered Interrupt Service Routine 80

2.10.4 Encoder Index Triggered Interrupt Service Routine 85

2.11 Analog Voltage Output (D/A Converter，DAC) Control 88

2.11.1 General Control . 88

2.11.2 Output Voltage Hardware Trigger Mode . 88

2.12 Analog voltage input (A/D Converter, ADC) Control 90

2.12.1 Initial Settings . 90

2.12.2 Continuous Voltage Conversion . 90

2.12.3 Single Channel Voltage Conversion . 91

2.12.4 Specific Voltage Triggered Interrupt Service Routine 91

2.12.5 Voltage Conversion Completion Triggered Interrupt Service

Routine . 95

2.13 Time and Watchdog Control . 97

2.13.1 Timer Triggered Interrupt Service Routine . 97

2.13.2 Watchdog Control . 98

2.14 Remote I/O Control . 100

2.14.1 Initial Settings . 100

2.14.2 Setting and Acquiring I/O Status . 100

3. A+ PC MODE DEVELOPMENT ENVIRONMENT 102

3.1 Using Visual C++ . 102

3.2 Using Visual Basic . 103

 IMP Series Motion Control Command Library User Manual

3

1. Introduction to the Motion Control Command Library

The Intelligent Motion control Platform (IMP) is equipped with built-in hard real-

time operation system (VxWorks) and CPU (PowerPC 440), which use the Motion

Control Command Library (MCCL). The IMP can be implemented and used under

either A
+

PC or standalone modes.

A
+

PC mode refers to the mode when the users develop, compile and run

applications with PC. The MCCL communicates with the IMP through PCI Bus or

Ethernet. MCCL is computed by the IMP while HMI and other application commands

are computed by the PC.

Applications under the A
+

PC mode can be used on platforms such as WINDOWS

98se / NT / 2000 / XP / 7 / 10 and support development environments like Visual C++,

Visual Basic, and Borland C++ Builder.

For applications under the standalone mode, users can install the installation disc

for the IMP to use intelligent motion control card IDK (Integrated Development Kits)

for developing applications of standalone mode. For detailed standalone application

integrated development environment usage, please refer to the IMP series standalone

mode user manual.

The MCCL provides 3D spatial trajectory planning commands such as point-to-

point, linear, arc, circular and helical motions. The MCCL also provides 14 types of

operation commands: go home, dry run, delay, jog motion, pause, continue and abort

motions.

For the trajectory planning function, it is possible to set different feed speeds, max

feed speed, and acceleration and deceleration durations and curve types. The MCCL

also consists of functions such as software and hardware over-travel check, blending,

override speed, and error message handling.

For position control, users can use the MCCL to set in position loop proportional

gain and error tolerance. The MCCL also provides functions like gear backlash, gear

gap compensation, and in position confirmation.

For I/O signal handling, the user can utilize the MCCL to acquire home position,

machine limits, and output Servo-On/Off signals. Meanwhile, certain I/O input signals

can automatically trigger the Interrupt Service Routine (ISR) which can be customized

 IMP Series Motion Control Command Library User Manual

4

by the user.

For the encoder function, the user can promptly acquire the encoder count and set

the encoder signal input rate. Certain input signals can automatically latch the encoder

count. The MCCL also supports the user-customizable ISR automatically triggering

when the encoder count reaches a given value.

For D/A conversion, the user can use the MCCL to output the required voltage

(-10V to 10V) as well as program the desired voltage in advance; this voltage will be

output automatically when trigger conditions are met.

For A/D conversion, the user can use the MCCL to acquire the voltage input (-5V

to 5V or 0V to 10V) and set the single or labeled channel voltage conversion. The ISR

will be triggered automatically once the voltage conversion is completed or the voltage

satisfies the comparative conditions.

For the timer function, the user can set the timer interrupt. Once the timer is

enabled, when the timer has expired, it will automatically trigger the user-customizable

ISR and reset the timer. This process will continue until it is disabled. The MCCL also

provides a watchdog function.

The MCCL is a powerful command library that allows users to quickly develop

and integrate motion control systems without requiring an in-depth understanding of

trajectory planning, position control, or real-time multi-tasking environment.

 IMP Series Motion Control Command Library User Manual

5

2. MCCL Functions

2.1 Software Specifications

A Operation System in PC Mode

 WINDOWS XP/XP Embedded

 WINDOWS 7/10

A Development Environment of PC Mode

 Borland C++ Builder (BCB)

 Visual C++ (VC++)

 Visual Basic (VB)

 Visual C# (VC#)

 Development Environment of Standalone Mode

IDK (provided with card)

WindRiver WorkBench (prepared by the user)

 Required files when using the MCCL under A
+

PC mode

 File Name

VC++

MCCL.h

MCCL_Fun.h

MCCLPCI_IMP.lib

VB MCCLPCI_IMP.bas

VC# MCCL.cs

 Required files when using the MCCL under standalone mode

 File Name

IDK
MCCL.h

MCCL_Fun.h

 IMP Series Motion Control Command Library User Manual

6

2.2 Motion Axis Definition and the Maximum Number of Combinable

Control Cards

2.2.1 Motion Axis Definition

The purpose of MCCL design is to provide motion functions that support three

orthogonal axes (X-Y-Z) and five auxiliary axes (U,V,W,A,B). See Fig. 2.2.1, U,V,W,A,

and B are the 5 auxiliary axes representing five independent axial directions.

X

Z

Y U V W A B

Fig. 2.2.1 Coordinate system with three orthogonal axes (X-Y-Z) and

five auxiliary axes (U、V、W、A、B)

The MCCL provides a maximum of 8 control axes with synchronous motion. The

users can utilize an IMP to control 1 to 8 axes simultaneously or separately. The user

can set one of two coordinate modes between absolute and incremental for given motion

commands. This command library will record the position relative to the home position

regardless of the coordinate mode selected.

 IMP Series Motion Control Command Library User Manual

7

2.2.2 Maximum Number of Combinable Control Cards

Depending on the card type, each motion control card can control up to 8 groups

of the system (both motor and driver). The MCCL can control up to 6 motion control

cards simultaneously, thereby controlling a maximum of 48 axes. The IMP can select

velocity command mode (V Command) or pulse command mode (P Command). The

basic configuration is displayed in Fig. 2.2.2.

User

Application

Driver Motor

Driver Motor

Driver Motor

Driver Motor

Driver Motor

Driver Motor

Driver Motor

Driver Motor

IMP Series

MCCL (Index : 0)

IMP Series

MCCL (Index : 1)

IMP Series

MCCL (Index : 5)

IMP Series

MCCL (Index : 2)

.

Fig. 2.2.2 The MCCL can combine with 6 IMP

 IMP Series Motion Control Command Library User Manual

8

2.3 Command Library Operational Properties

After motion commands in the MCCL are called, the related motion commands

will be placed into each group’s exclusive motion command queue first instead of

being executed immediately (For descriptions regarding groups, please refer to section

2.5.1-Enabling the motion control command library). The MCCL will then use first-

in first-out (FIFO) principle to get the motion command from the queue to interpret and

calculate the interpolation (see Fig. 2.3.1). However, these two operations are not

sequential and synchronized, meaning that it is not necessary to wait for the completion

of one motion command before the new motion command can be sent to the queue.

MCC_Line(10, 10, 0, 0, 0, 0, 0, 0, 0)

MCC_ArcXY(10, 20, 20, 20, 0)

MCC_CircleXY(25, 20, 0, 0)

Queue

OP Code 3

Interpolate

Put Get

Asynchronization

OP Code 2

OP Code 1

Fig. 2.3.1 Motion command queue

The motion command queue of each group is preset to store 10,000 commands and

MCC_GetCmdQueueSize can be used to acquire the current queue size. Caution: the

queue size can only be set when creating a group. User can use

MCC_CreateGroupEx to change the queue size, the function prototype is as follow：

MCC_CreateGroupEx(int xMapToCh ,

 int yMapToCh ,

 int zMapToCh ,

 int uMapToCh ,

 int vMapToCh ,

 int wMapToCh ,

 int aMapToCh ,

 int bMapToCh ,

Asynchronous Asynchronous

 IMP Series Motion Control Command Library User Manual

9

 int nCardIndex ,

 int nMotionQueueSize);

nMotionQueueSize： Define the motion command queue size by user

The following is a list of commands that manipulate the motion command queue.

By calling these commands, the MCCL will put a command into the motion

command queue, get the first command in the queue (as well as remove it) at the

appropriate time, and perform the corresponding action:

A. Linear motion command

MCC_Line()

B. Arc motion command

MCC_ArcXYZ() MCC_ArcXYZ_Aux()

MCC_ArcXY() MCC_ArcXY_Aux ()

MCC_ArcYZ() MCC_ArcYZ_Aux ()

MCC_ArcZX() MCC_ArcZX_Aux ()

MCC_ArcThetaXY() MCC_ArcThetaYZ()

MCC_ArcThetaZX()

C. Circular motion command

MCC_CircleXY() MCC_CircleYZ()

MCC_CircleZX()

MCC_CircleXY_Aux () MCC_CircleYZ_Aux ()

MCC_CircleZX_Aux ()

D. Helical motion command

MCC_HelicaXY_Z() MCC_HelicaYZ_X()

MCC_HelicaZX_Y()

MCC_HelicaXY_Z_Aux () MCC_HelicaYZ_X_Aux ()

MCC_HelicaZX_Y_Aux ()

 IMP Series Motion Control Command Library User Manual

10

E. Point-to-Point motion command

MCC_PtP() MCC_PtPX() MCC_PtPY()

MCC_PtPZ() MCC_PtPU() MCC_PtPV()

MCC_PtPW() MCC_PtPA() MCC_PtPB()

F. Jog motion command

Jog motion (Unit: Pulse) / Jog motion (Unit: User Unit, UU (the unit is determined

by the user)) / Continuous jog motion (Unit: User Unit, UU)

MCC_JogSpace() MCC_JogConti() MCC_JogPulse()

G. In Position command

MCC_EnableInPos() MCC_DisableInPos()

H. Path blending command

MCC_EnableBlend() MCC_DisableBlend() MCC_CheckBlend()

I. Delay motion command

MCC_DelayMotion()

Usage of the above commands when the motion command queue is full will result

in a return value of COMMAND_BUFFER_FULL_ERR, meaning that the command

cannot be accepted. Fig. 2.3.1 represents the operational process for Group 0 motion

command queue and demonstrates that motion commands of the same group will be

executed sequentially. Since each group has its exclusive motion command queue,

motion commands from different groups can be executed simultaneously.

CAUTION: Commands that are not in A through I of section 2.3 will not be queued,

and be executed immediately.

For example: setting X axis of Group 0 move to the coordinate 10, output the servo-on

signal and have this axis move to the coordinate 20. The program can be written as

follows:

MCC_Line(10, 0, 0, 0, 0, 0, 0, 0, 0);

 IMP Series Motion Control Command Library User Manual

11

MCC_SetServoOn(1, 0);

MCC_Line(20, 0, 0, 0, 0, 0, 0, 0, 0);

Then, once MCC_Line() has been placed in the motion command queue (not

executed yet), MCC_SetServoOn() will be executed immediately. Because

MCC_SetServoOn() is executed immediately instead of being placed in the queue, the

servo-on signal will be sent before the actual position reaches coordinate 10. The user

needs to pay extra attention to this operational characteristic.

 IMP Series Motion Control Command Library User Manual

12

If the signal output is required to execute after X axis reaches coordinate 10, the

user needs to make the additional determination. Users need to verify system motion

status or current coordinate by themselves to control the signal output. The following

is a simple example:

// Assume the X-axis in Group 0 is required to move to coordinate 10 before

output servo-on signal

MCC_Line(10, 0, 0, 0, 0, 0, 0, 0, 0);

while(MCC_GetMotionStatus(0) != GMS_STOP)

// MCC_GetMotionStatus() return value equaling GMS_STOP indicates that

currently all motion commands have been completed

MCC_SetServoOn(1, 0);

MCC_Line(20, 0, 0, 0, 0, 0, 0, 0, 0);

 IMP Series Motion Control Command Library User Manual

13

2.4 Mechanism、Encoder and Go Home Parameter Settings

2.4.1 Mechanism Parameters

The MCCL uses mechanism parameters to define mechanical platform

characteristics and driver usage type of the user as well as program the positioning

system, boundary values of coordinate system, and the maximum safe feed speed of

each axis corresponding to the working home position.

dwPPR

Ball Screw

E M

Gear Box

N1 N2

= N1 / N2
wRPM

dfPitch

dfHighLimitdfLowLimit

Machine Zero Logic Zero

dfOffset

+-
Zero

Table

dfGearRatio

Fig. 2.4.1 Mechanical platform characteristics

Below is a detailed description of the mechanism parameters:

typedef struct _SYS_MAC_PARAM

{

WORD wPosToEncoderDir;

WORD wRPM;

DWORD dwPPR;

double dfPitch;

 IMP Series Motion Control Command Library User Manual

14

double dfGearRatio;

double dfHighLimit;

double dfLowLimit;

double dfHighLimitOffset;

double dfLowLimitOffset;

WORD wPulseMode;

WORD wPulseWidth;

WORD wCommandMode;

WORD wPaddle;

WORD wOverTravelUpSensorMode;

WORD wOverTravelDownSensorMode;

} SYS_MAC_PARAM;

wPosToEncoderDir: Directional adjustment parameter

0 Output command does not reverse

1 Output command reverses

This parameter is used to correct the direction of motion command when it differs from

the desired structural motion direction. If a forward motion command such as

MCC_JogSpace(10, 10, 0, 0) is sent, but the machine actually moves in the direction

opposite to user definition due to the motor wiring, this parameter can be set to “1” at

this point to align the direction of motion command with the desired motion direction.

(altering motor wiring is not required).

wRPM: Maximum speed of motor rotations

The maximum speed of motor rotations for each axis. When conducting fast point-

to-point motion, the motor speed of each axis converted from the speed setting will

not exceed the wRPM setting.

 See Also MCC_SetPtPSpeed()

dwPPR: Increases the encoder count for each revolution of the motor or requires pulses

per rotation.

When closed loop control is used, this value is the increase of encoder count with

every revolution of the motor; if an open circuit system is used, then this value is

 IMP Series Motion Control Command Library User Manual

15

pulses required per revolution.

When using a linear motor, both dfPitch and dfGearRatio should be set to 1.

Additionally, a linear motor does not have definitions related to dwPPR and pulse is the

unit of meaure for distance

So dwPPR can be set as 1 at this point to change the unit used in the MCCL into a pulse.

For example, when X-axis is required to move 1000 pulses, MCC_Line(1000, 0, 0, 0,

0, 0, 0, 0, 0) can be called for the X axis to output 1000 pulses; when

MCC_SetFeedSpeed(500) is used, it means that the required linear motor speed is 500

pulses per second.

dfPitch: Ball screw backlash

The distance which the table moves for each revolution of the ball screw; unit: UU. If

there is no ball screw configuration, this value should be set to 1.

dfGearRatio: Gearbox deceleration ratio

The two-way gear ratio of the gearbox connecting the motor shaft and the ball screw;

this value can be calculated by using the number of gear gaps or simply defined as

“number of motor rotations per ball screw revolution”. If there is no gearbox

configuration, this value should be set to 1.

dfHighLimit: Positive boundary for over travel software (also called high limit)

This value is the maximum positive displacement allowed from the working home

position; unit: UU.

 See also MCC_SetOverTravelCheck()

dfLowLimit: Negative boundary for over travel software (also called low limit)

This value is the maximum negative displacement allowed from the working home

position and is often set as a negative value; unit: UU.

dfHighLimitOffset:

To preserve the field, set to 0.

 IMP Series Motion Control Command Library User Manual

16

dfLowLimitOffset:

To preserve the field, set to 0.

wPulseMode: Pulse output mode

DDA_FMT_PD Pulse/Direction

DDA_FMT_CW CW/CCW

DDA_FMT_AB A/B phase

wPulseWidth: Pulse output width (The IMP does not perform this function)

wCommandMode: Motion command output mode

OCM_PULSE Pulse Command

OCM_VOLTAGE Voltage Command

Caution: wPulseMode and wPulseWidth only have meaning when this value is

OCM_PULSE.

wPaddle: To reserve the field, set to 0.

wOverTravelUpSensorMode: Positive limit switch wiring; please refer to the below

description to verify that the wiring is correct.

SL_NORMAL_OPEN Active High

SL_NORMAL_CLOSE Active Low

SL_UNUSED Does not check if the limit switch has been

triggered. This item can be used if the limit switch

has yet to be installed on the axis indicated.

wOverTravelDownSensorMode: Negative limit switch wiring; please refer to the

below description to verify that the wiring is correct.

SL_NORMAL_OPEN Active High

SL_NORMAL_CLOSE Active Low

SL_UNUSED Does not check if the limit switch has been

triggered. This item can be used if the limit switch

has yet to be installed on the axis indicated.

 IMP Series Motion Control Command Library User Manual

17

COM

OT+
NO

(Active Low)

+24V

24V_GND

IMP Series
Limit Switch +

COM

OT+

NC
(Active High)

+24V

24V_GND

IMP Series Limit Switch -

Fig. 2.4.2 Limit switch wiring

To use the limit switch function, wOverTravelUpSensorMode and

wOverTravelDownSensorMode must be accurately set according to the limit switch

wiring (see Fig. 2.4.2). MCC_GetLimitSwitchStatus() can be used to verify the limit

switch status of the wiring settings. If the limit switch status obtained by

MCC_GetLimitSwitchStatus() is active when the limit switch has yet to be triggered,

then there is an error in wiring setting; to fix this, wOverTravelUpSensorMode,

wOverTravelDownSensorMode or both need to be changed.

In order to make the limit switch operate normally, it is also necessary to call

MCC_EnableLimitSwitchCheck() so that the settings of wOverTravelUpSensorMode

and wOverTravelDownSensorMode become effective.

However, if wOverTravelUpSensorMode and wOverTravelDownSensorMode are

set as SL_UNUSED, then it is meaningless to call MCC_EnableLimitSwitchCheck().

When this function is enabled and the limit switch of the motion direction of a

given axis is triggered, such as triggering the positive limit switch when moving in the

positive direction or triggering the negative limit switch when moving in the negative

direction, it will stop the output group motion command and produce an error record.

MCC_EnableLimitSwitchCheck() is generally used in combination with

MCC_GetErrorCode(). Continuous calling of MCC_GetErrorCode () can verify if the

system has produced an error record because the limit switch is triggered (codes 0xF701

to 0xF708 represents the limit switch is triggered by axis X to B respectively). When

 IMP Series Motion Control Command Library User Manual

18

an error from a triggered limit switch is discovered, the common response can be a

message displayed on the screen to notify the operator. Then MCC_ClearError() is

called in the program to clear the error so that the system can travel in the opposite

direction to move away from the limit switch.

After the content of each field is confirmed, the user can use

MCC_SetMacParam() to set the mechanism parameters. Below is an example:

SYS_MAC_PARAM stAxisParam;

memset(&stAxisParam, 0, sizeof(SYS_MAC_PARAM)); // clear content to zero

stAxisParam.wPosToEncoderDir = 0;

stAxisParam.dwPPR = 500;

stAxisParam.wRPM = 3000;

stAxisParam.dfPitch = 1.0;

stAxisParam.dfGearRatio = 1.0;

stAxisParam.dfHighLimit = 50000.0;

stAxisParam.dfLowLimit = -50000.0;

stAxisParam.wPulseMode = DDA_FMT_PD;

stAxisParam.wPulseWidth = 100; // any value

stAxisParam.wCommandMode = OCM_PULSE;

stAxisParam.wOverTravelUpSensorMode = SL_UNUSED; // not check

stAxisParam.wOverTravelDownSensorMode = SL_UNUSED; // not check

MCC_SetMacParam(&stAxisParam, 0, 0); // set Axis 0 in Card 0

Generally, the mechanism parameters must be set before the MCC_InitSystem() is

used. The mechanism parameter of each axis must be set separately.

 See Also MCC_GetMacParam()

 IMP Series Motion Control Command Library User Manual

19

2.4.2 Encoder Parameters

The MCCL uses encoder parameters to define the encoder characteristics,

including the encoder signal input type, signal input phase swap and counts per encoder

cycle (×1, ×2, ×4). A detailed description of the encoder parameters is provided below:

typedef struct _SYS_ENCODER_CONFIG

{

 WORD wType;

 WORD wAInverse;

 WORD wBInverse;

 WORD wCInverse;

 WORD wABSwap;

WORD wInputRate;

 WORD wPaddle[2];

} SYS_ENCODER_CONFIG;

wType: Input type setting

ENC_TYPE_AB A/B Phase

ENC_TYPE_CW CW/CCW

ENC_TYPE_PD Pulse / Direction

wAInverse: Phase A signal inverse setting

0 Not inverse

1 Inverse

wBInverse: Phase B signal inverse setting

0 Not inverse

1 Inverse

wCInverse: Phase C (Phase Z) signal inverse setting

0 Not inverse

1 Inverse

 IMP Series Motion Control Command Library User Manual

20

wABSwap: Phase A/B signal swap setting

0 Not swap

1 Swap

wInputRate: Set counts per encoder cycle

1 1 counts per encoder cycle (x1)

2 2 counts per encoder cycle (x2)

4 4 counts per encoder cycle (x4)

wPaddle: To reserve the field, set to 0.

After each field content within the encoder parameters is confirmed, the encoder

parameter can be set by using MCC_SetEncoderConfig(). Below is an example of this

command:

SYS_ENCODER_CONFIG stENCConfig;

memset(&stENCConfig, 0, sizeof(SYS_ENCODER_CONFIG));

stENCConfig.wType = ENC_TYPE_AB;

stENCConfig.wAInverse = 0; // not inverse

stENCConfig.wBInverse = 0; // not inverse

stENCConfig.wCInverse = 0; // not inverse

stENCConfig.wABSwap = 0; // not swap

stENCConfig.wInputRate = 4; // set 4 counts per encoder cycle

MCC_SetEncoderConfig(&stENCConfig, 0, 0); // set Axis 0 in Card 0

The encoder parameters must be set before the MCC_InitSystem() is used. The

encoder parameters of each axis must be set separately.

CAUTION

If the mechanism or encoder parameters are changed after MCC_InitSystem() is

called, then MCC_UpdateParam() must also be called so that the system can respond

 IMP Series Motion Control Command Library User Manual

21

to the new settings. However, the effect of using MCC_UpdateParam() is similar to

the effect of using MCC_ResetMotion() and the system will return to the initial status

after MCC_InitSystem() is called.

2.4.3 Go Home Parameters

The MCCL uses the go home parameters to define the go home action, including

usage mode, go home motion direction, home sensor wiring, encoder index signal count,

and acceleration and deceleration durations. For details of this function, please refer to

section 2.8-”Go Home”.

The go home parameter content is described below:

typedef struct _SYS_HOME_CONFIG

{

WORD wMode;

 WORD wDirection;

 WORD wSensorMode;

 WORD wPaddel0;

 int nIndexCount;

 int nPaddel1;

 double dfAccTime;

 double dfDecTime;

 double dfHighSpeed;

 double dfLowSpeed;

 double dfOffset;

} SYS_HOME_CONFIG;

wMode: Go home mode

This parameter value must be greater than or equal to 3 and smaller than or equal to 16.

For detailed descriptions of each mode, please refer to the section related to go home.

 IMP Series Motion Control Command Library User Manual

22

wDirection: Initial direction of go home motion

0 Positive

1 Negative

wSensorMode: Home sensor wiring

SL_NORMAL_OPEN Active high

SL_NORMAL_CLOSE Active low

COM

HOM
NO

(Active Low)

+24V

24V_GND

IMP Series
Home Sensor

COM

HOM

NC

(Active High)

+24V

24V_GND

IMP Series Home Sensor

Fig. 2.4.3 Home sensor wiring

To use the go home function, wSensorMode must be correctly set according to the

home sensor wiring (see Fig. 2.4.3). MCC_GetHomeSensorStatus() can be used to

verify the home sensor status of the wiring settings. If the home sensor status obtained

by using MCC_ GetHomeSensorStatus() is active when the home sensor is not

triggered, this means the wiring setting is incorrect and the setting wSensorMode must

be changed.

wPaddle0: To reserve the field, set to 0.

nIndexCount: Indicated encoder index signal number

For phase 2 in go home motion process (searching for the indicated index number),

the code for the first index signal occurs is 0, the one for the second index signal is 1

and follow this order for the subsequent index signals. For some go home modes, it is

necessary to indicate the encoder index signal number. When the index signal satisfies

this setting is triggered, the entire go home motion can be completed.

 IMP Series Motion Control Command Library User Manual

23

wPaddle1: To reserve the field, set to 0.

dfAccTime: The time required to accelerate to dfHighSpeed or dfLowSpeed during the

go home procedure. Unit: ms.

dfDecTime: The time required to decelerate from dfHighSpeed or dfLowSpeed to stop

during the go home motion. Unit: ms.

dfHighSpeed: High speed setting. Unit: UU/sec.

This parameter is the speed used during the first phase of the go home procedure.

dfLowSpeed: Low speed setting. Unit: UU/sec.

This parameter is the speed used during the final phase of completing the go home

motion.

dfOffset: Distance between the working home position and machine home position.

Unit: UU.

Generally, the displacement between the machine home position and the working

home position will be found during calibration. To confirm this displacement, first set

dfOffset as 0. When the go home procedure is completed (the platform stops at the

“machine home position”), use the jog command to move the platform to the “working

home position” and use this displacement to set dfOffset. After performing go home

procedure again, the motion axis will move to the “working home position” and the

system will use this position as the reference home of motion command.

After the content of each field of go home parameters is confirmed, the user can

use MCC_SetHomeConfig() to set go home parameters. Below is an example:

SYS_HOME_CONFIG stHomeConfig;

memset(&stHomeConfig, 0, sizeof(SYS_HOME_CONFIG));

stHomeConfig.wMode = 3; // use mode 3

stHomeConfig.wDirection = 1; // go Home motion in a negative direction

stHomeConfig.wSensorMode = 0; // use Active High wiring

 IMP Series Motion Control Command Library User Manual

24

stHomeConfig.nIndexCount = 2; // INDEX code 2

stHomeConfig.dfAccTime = 300; // time required for acceleration; unit: ms

stHomeConfig.dfDecTime = 300; // time required for deceleration; unit: ms

stHomeConfig.dfHighSpeed = 10; // unit: UU/sec

stHomeConfig.dfLowSpeed = 2; // unit: UU/sec

stHomeConfig.dfOffset = 0;

MCC_SetHomeConfig(&stHomeConfig, 0, 0); // set Axis 0 in Card 0

The go home parameters of each axis must be set separately before the go home

motion can be executed.

2.4.4 Group (Motion Group) Parameter Setting

All required groups (motion groups) must be created before using the MCCL. A

group can be considered as an independent motion system. When this system moves,

an interdependent relationship often exists between each internal motion axis. The X-

Y-Z platform is an example of this.

The MCCL implemented in a group operation concept and most of the motion

control commands are operated in groups. Each group consists of eight motion axes: X,

Y, Z, U, V, W, A, and B; each motion axis is not required to actually correspond to an

output channel on IMP. The MCCL can simultaneously control up to six IMPs while

each card can define up to eight groups. Therefore, a maximum of 48 independent

groups can be used at the same time without affecting the operation of each other.

 IMP Series Motion Control Command Library User Manual

25

0 1 2 5 6 7
IMP Series 運動控制平台 (Index: 0)3 4

Group 0

-1 -1 -1
X Y Z U V W A B

-1 -1

Group 1

-1 -1 -1
X Y Z U V W A B

-1 -1

Group 47

X Y Z U V W A B

Group 2

X Y Z U V W A B

Fig. 2.4.4 Group parameter settings

Using Fig. 2.4.4 as an example, two groups and one IMP are used. The results of

the trajectory planning for the X, Y, and Z axes in Group 0 are respectively output from

the physical output channels 0, 1, and 2 in Card 0 while the result of trajectory planning

for the U, V, W, A, and B axes is ignored. The result of trajectory planning for the X, Y,

and Z axes in Group 1 are respectively output from the output channels 3, 4, and 5 in

Card 0 while the result of trajectory planning for the U, V, W, A, and B axes is ignored.

The program can be written as follows:

int nGroup0, nGroup1;

MCC_CloseAllGroups(); // disable all groups

nGroup0 = MCC_CreateGroup(0, // X corresponds to a physical output

channel 0 physical output channel 0

1, // Y corresponds to a physical output

channel 1 physical output channel 1

2, // Z corresponds to a physical output

channel 2physical output channel 2

-1, // U does not correspond to a physical

output channel

-1, // V does not correspond to a physical

output channel

IMP (Index: 0)

0

 IMP Series Motion Control Command Library User Manual

26

-1, // W does not correspond to a physical

output channel

-1, // A does not correspond to a physical

output channelysical output channel

-1, // B does not correspond to a physical

output channel

0); // corresponds to Card 0

nGroup1 = MCC_CreateGroup(3, // X corresponds to a physical output

channel 3phphysical output channel

4, // Y corresponds to a physical output

channel 4physicysical output channel

5, // Z corresponds to pa physical output

channel 5siphh

ysical output channel

-1, // U does not correspond to a physical

output channel p

-1, // V does not correspond to a physical

output channel

-1, // W does not correspond to a physical

output channel

-1, // A does not correspond to a physical

output channelnnel

-1, // B does not correspond to a physical

output channel

0); // corresponds to Card 0

The return value of MCC_CreateGroup() represents the newly established group

number (0 to 47). This group number will be used later when calling motion commands.

For example, when the user wants to move axes X, Y, and Z in Group 1 to coordinate

10, the program should be written as MCC_Line(10, 10, 10, 0, 0, 0, 0, 0, nGroup1);

channels 3, 4, and 5 on IMP Card 0 will be responsible to the interpolation output of

axes X, Y, and Z in this group. This is further illustrated in the following example:

 IMP Series Motion Control Command Library User Manual

27

MCC_Line(10, 10, 10, 0, 0, 0, 0, 0, nGroup0); // Command 0

MCC_Line(20, 20, 20, 0, 0, 0, 0, 0, nGroup0); // Command 1

MCC_Line(10, 10, 10, 0, 0, 0, 0, 0, nGroup1); // Command 2

MCC_Line(20, 20, 20, 0, 0, 0, 0, 0, nGroup1); // Command 3

Using the above group settings, Group 0 will execute Command 0 and output the

trajectory planning for axes X, Y, and Z from channels 0, 1, and 2 on Card 0. After

Command 0 is completed, Group 0 will then execute command 1 from the same group.

Since each group operates independently, Group 1 does not need to wait until

Group 0 finishes Command 0 before directly executing Command 2 as well as

outputting the trajectory planning for axes X, Y, and Z from channels 3, 4, and 5 in Card

0. After Command 2 is completed, Group 1 will then execute Command 3 from the

same group.

 If no groups are created before activating the MCCL, then the MCCL will operate

by default. The default operation simply enables the index to be Group 0 and its motion

axes X, Y, Z, U, V, W, A, and B to correspond to output channels 0 to 7 on Card 0.

Note

1. Groups do not affect each other.

2. Groups all contain 8 motion axes (X, Y, Z, U, V, W, A, and B) that can be

programmed to correspond to a physical output channel or not. However, at

least one motion axis in the group should be correspond to a physical

output channel. In addition, two motion axes cannot correspond to the

same physical output channel.

3. To reduce CPU usage rate, minimize the number of groups used.

 IMP Series Motion Control Command Library User Manual

28

2.5 Initialize and Close the Motion Control Command Library

2.5.1 Initializing the Motion Control Command Library

The following parameters must be set prior to using the MCCL:

a. Mechanism parameters Use MCC_SetMacParam()

b. Encoder parameters Use MCC_SetEncoderConfig()

c. Group parameters Use MCC_CreateGroup() / MCC_CloseAllGroups()

If these parameters have not been set or if errors occur during these procedures,

other commands in the MCCL cannot be used. Please refer to the previous description

and “IMP Series Motion Control Command Library Example Manual” for

settings of the machine, the encoder and the Group (motion group). The following

will only introduce how to enable the MCCL.

I. Initializing the MCCL

Use MCC_InitSystem() to initiate the MCCL. MCC_InitSystem() command

declaration is as follows:

int MCC_InitSystem(int nInterpolateTime,

SYS_CARD_CONFIG *pstCardConfig,

WORD wCardNo);

nInterpolateTime is the interpolation time (please refer to the explanation in a later

section); unit: ms. The setting limits are between 1 ms to 50 ms, with a suggested value

of 2 ms. Shorter interpolation times will reduce the distance between two interpolation

points, but increase the workload of CPU. Below is a reference to interpolation time

settings. These suggested values are not absolute and should be adjusted according to

actual needs.

 IMP Series Motion Control Command Library User Manual

29

System Characteristics
Suggested Interpolation

Time

Only requires linear motion 5 ms ~ 10 ms

Generally includes arc motion 5 ms

Required arc motion trajectories to be circular 1ms ~ 3ms

pstCardConfig is the IMP hardware parameter settings for the previous step. wCardNo

is the number of IMP used at this time.

2.5.2 Close the Motion Control Command Library

To close the MCCL, simply call MCC_CloseSystem() command.

 IMP Series Motion Control Command Library User Manual

30

2.6 Motion Control

2.6.1 Position System

The position system includes the following functions:

I. Select between absolute or incremental position system

 See Also MCC_SetAbsolute()

MCC_SetIncrease()

MCC_GetCoordType()

II. Acquire current position coordinates

 See Also MCC_GetCurPos() MCC_GetCurRefPos()

MCC_GetPulsePos()

III. Enable/disable software over-travel check function

Once MCC_SetOverTravelCheck() is used to enable the over-travel check

function, after calculating each interpolation point, the MCCL will check if the

interpolation point exceeds the effective work zone of each axis. If the point is verified

to exceed the work zone, commands will not be sent to the motion control card. The

user can use MCC_GetErrorCode() to check the information mode (for the meaning of

information code, please refer to IMP Series Motion Control Command Library

Reference Manual) to confirm if the effective work zone has been exceeded.

 See Also MCC_GetOverTravelCheck()

MCC_GetErrorCode()

IV. Enable/disable hardware limit switch check function

For this function, please refer to the description in section “2.4.1Mechanism

Parameters”.

 See Also MCC_EnableLimitSwitchCheck()

MCC_DisableLimitSwitchCheck()

MCC_GetLimitSwitchStatus()

 IMP Series Motion Control Command Library User Manual

31

2.6.2 Basic Trajectory Planning

The MCCL provide linear, arc, circular and helical motion (collectively referred to

as general motion) along with the point-to-point motion trajectory planning. Before

using these functions, it is required to set acceleration and deceleration types (S or

trapezoid), acceleration and deceleration durations and feed speed corresponding to

mechanism characteristics and special requirements.

I. General Motion (Linear, arc, circular, and helical motion)

The general motion includes multi-axis synchronized motions such as linear, arc,

circular and helical motions. Usually, the return value of these functions is checked

when using the general motion command. If the return value is smaller than 0, it means

the motion command is rejected; for reasons of rejection, please refer to the manual

related to return value definitions (refer to “IMP Series Motion Control Command

Library Reference Manual”). If the return value is larger than or equal to 0, the value

is the index number given by the MCCL to the motion command. The user can follow

the motion command execution process by these index numbers.

MCC_ResetCommandIndex() can be used to reset this index value to restart counting

from 0.

A. Linear Motion

When using the linear motion command, only the destination position or

displacement of each axis needs to be set. Based on the feed speed motion provided,

the preset acceleration and deceleration durations are 300 ms.

 See Also MCC_Line()

B. Arc Motion

When calling the arc motion command, only the reference and end point

coordinates need to be set. Based on the feed speed motion provided, the preset

acceleration and deceleration durations are 300 ms. The MCCL also provides 3-D arc

motion command.

 IMP Series Motion Control Command Library User Manual

32

 See Also MCC_ArcXYZ() MCC_ArcXYZ_Aux()

MCC_ArcXY() MCC_ArcXY_Aux ()

MCC_ArcYZ() MCC_ArcYZ_Aux ()

MCC_ArcZX() MCC_ArcZX_Aux ()

 MCC_ArcThetaXY() MCC_ArcThetaYZ()

 MCC_ArcThetaZX()

C. Circular Motion

When calling the circular motion command, only the center position need to be

set, and the direction of motion (clockwise or counter-clockwise) needs to be indicated.

Based on the feed speed motion provided, the preset acceleration and deceleration

durations are 300 ms.

 See Also MCC_CircleXY() MCC_CircleXY_Aux ()

 MCC_CircleYZ() MCC_CircleYZ_Aux ()

MCC_CircleZX() MCC_CircleZX_Aux ()

D. Helical Motion

When calling the helical motion command, only the center position and the linear

feed axis end point and pitch need to be set, and the direction of motion (clockwise or

counter-clockwise) needs to be indicated. Based on the feed speed motion provided, the

preset acceleration and deceleration durations are 300 ms.

 See Also MCC_HelicaXY_Z()

MCC_HelicaYZ_X()

MCC_HelicaZX_Y()

MCC_HelicaXY_Z_Aux ()

MCC_HelicaYZ_X_Aux ()

MCC_HelicaZX_Y_Aux ()

 IMP Series Motion Control Command Library User Manual

33

E. General Motion Acceleration/Deceleration Time and Feed Speed

MCC_SetAccTime() and MCC_SetDecTime() can be used to set the desired

general motion acceleration and deceleration durations; MCC_SetFeedSpeed() can be

used to set the desired feed speed. Additionally, please note that the MCCL only

considers the 3 axes X/Y/Z when calculating the feed speed of general motion while

axes U/V/W/A/B simply start and end motion simultaneously aligning with the

previous 3 axes for linear motion). If there is no displacement of X/Y/Z in this motion

command, the set feed speed will be altered to indicate the speed of axes U/V/W/A/B

that has traveled the furthest and the other 4 axes simultaneously start and end in concert

(similar to point-to-point motion).

The feed speed setting cannot exceed the limit set by using

MCC_SetSysMaxSpeed(); the value set by MCC_SetSysMaxSpeed() will become the

feed speed when the limit is exceeded. MCC_SetSysMaxSpeed() must be used prior to

InitSystem().

 See Also MCC_GetFeedSpeed()

MCC_GetCurFeedSpeed()

 MCC_GetSpeed()

II. Point-to-Point Motion

Point-to-point motion is very similar to the linear motion in general motion. The

only different is that the speed of general motion is set by MCC_SetFeedSpeed() in the

unit of UU/sec while point-to-point motion uses the maximum safe feed ratio with the

corresponding command MCC_SetPtPSpeed(). This ratio is calculated as follows:

point-to-point feed speed for each axis =

maximum safe speed for each axis x (feed speed

ratio/100)

maximum safe speed for each axis = (RPM / 60) × Pitch / GearRatio

 IMP Series Motion Control Command Library User Manual

34

Once the feed speed of each axis is obtained, the required time for each axis can

be calculated. The MCCL will then use the axis requiring the longest time as the primary

axis, with other axes starting and ending simultaneously.

Point-to-point acceleration and deceleration durations still follows the settings in

general motion.

 See Also MCC_PtP()

 MCC_GetPtPSpeed()

III. Jog motion (Unit: Pulse) /Jog motion (Unit: UU) / Continuous jog motion

(Unit: UU)

A. Jog motion (Unit: Pulse): MCC_JogPulse()

This command requires specific axis movement to be indicated in pulses

(maximum displacement is 2048 pulses). When using this command, motion

status must be stopped (the return value of MCC_GetMotionStatus() should be

GMS_STOP).

MCC_JogPulse(10, 0, 0);

 displacement (pulse) indicated axis group index

B. Jog motion (Unit：UU): MCC_JogSpace()

This command requires a specific axis to move by the indicated displacement

(Unit: UU) according to the indicated feed speed ratio (please see the description

of point-to-point motion). When using this command, motion status must be

stopped (the return value of MCC_GetMotionStatus() should be GMS_STOP).

MCC_AbortMotionEx() can be used to stop this motion. The following is an

example of using this command.

MCC_JogSpace(1, 20, 0, 0);

 displacement feed speed ratio indicated axis group index

 IMP Series Motion Control Command Library User Manual

35

C. Continuous jog motion (Unit：UU): MCC_JogConti()

This command requires the selected axis to move according to the indicated feed

speed ratio (please see the description of point-to-point motion) and direction, and

will only stop at the effective work zone boundary set by the user (the definition

of effective work zone is in the mechanism parameters). When using this

command, motion status must be stopped (the return value of

MCC_GetMotionStatus() should be GMS_STOP). MCC_AbortMotionEx() can

be used to stop this motion. The following is an example of using this command.

MCC_JogConti(1, 20 , 0, 0);

Displacement feed speed ratio indicated axis group index

(1: positive; -1: negative)

IV. Pause, Continue and Abort Motion

MCC_AbortMotionEx() can be used to abort all motion commands currently

being executed and stored. MCC_HoldMotion() can be used to pause the motion

command being executed (the motion is constantly decelerated to a stop at this point).

At this time, the system will only continue executing the unfinished portion of the

command after MCC_ContiMotion() is used. Meanwhile, MCC_AbortMotionEx() can

also be used to cancel the unfinished portion.

MCC_AbortMotionEx() stops the motion using the indicated deceleration time.

If the system is already in the hold status, the deceleration time parameter will be

ignored.

 See Also MCC_GetMotionStatus()

2.6.3 Advanced Trajectory Planning

To achieve more flexible and effective in position control, the MCCL provides

several advanced trajectory planning functions. For example, motion blending function

can be used when the precise positioning is not required between different motion

 IMP Series Motion Control Command Library User Manual

36

commands while it is necessary to reach a designated position quickly. For common

tracking problems in the control system, the MCCL also provides override speed

function that allows dynamic adjustment of feed speed. Below are descriptions for each

of these functions.

TT

VV

Trapezoid Curve S Curve

Fig. 2.6.1 Acceleration and deceleration types

I. Acceleration and Deceleration Types Settings

Acceleration and deceleration types can be set as either a trapezoid curve or an S

curve (see Fig. 2.6.1). The type used for each axis of point-to-point, linear, arc, circular,

helical motion can be set using the identical approach.

 See Also MCC_SetAccType() MCC_GetAccType()

 MCC_SetDecType() MCC_GetDecType()

 MCC_SetPtPAccType() MCC_GetPtPAccType()

MCC_SetPtPDecType() MCC_GetPtPDecType()

II. Enable/Disable Motion Blending

MCC_EnableBlend() can be used to enable motion blending function. This

function can satisfy the requirement to achieve a continuous blending in speed between

different motion commands (meaning that before completing the previous motion

command, it does not need to decelerate to stop and can directly accelerate or decelerate

to the speed required by the next motion command). The motion blending functions

include linear-linear, linear-arc, and arc-arc motion blending.

 IMP Series Motion Control Command Library User Manual

37

Prior to the start of the motion

blend function

After the start of the motion blend

function

Command 1

Command 2

Command 1

Command 2

Velocity Velocity

Time Time

Fig. 2.6.2 Speed during motion blend

Fig. 2.6.2 shows the motion status after motion blending is enabled. The first

motion command directly accelerates to the stable speed of the second motion command

from its own stable speed without decelerating (as the solid line in Fig. 2.6.2 shows).

With this method, the command is executed faster while the trajectory error will exist

at the connection points between each command. Fig. 2.6.3 show the motion trajectory

after motion blending is enabled (the dotted line show the originally planned trajectory

curve).

Linear-linear

motion blending
Linear-curved

motion blending

Curved-curved

motion blending

Fig. 2.6.3 Linear-linear, linear-arc, arc-arc motion blending

 See Also MCC_DisableBlend()

MCC_CheckBlend()

III. Override Speed

Override speed can be used when the feed speed needs to be dynamically altered

during motion. This function can accelerate the speed of command being executed V1

Linear-arc

Motion blending

Arc-arc

Motion blending

Linear-l inear

Motion blending

 IMP Series Motion Control Command Library User Manual

38

to the required speed V2 (when V1 < V2), or decelerate from the current speed V3 to

the required speed V4 (when V3 > V4).

In Fig. 2.6.4, V2 = V1 × 175 / 100 (using MCC_OverrideSpeed(175)); similarly,

V4 = V3 × 50 / 100 (using MCC_OverrideSpeed(50)).

Using the speed ratio indicated by MCC_OverrideSpeed() to change tangential

speed instantaneously and forcibly. The speed ratio is defined as:

speed ratio = (altered feed speed / original feed speed) × 100

The original feed speed is the speed set by either MCC_SetFeedSpeed() or

MCC_SetPtPSpeed(). Caution: Using MCC_OverrideSpeed() will affect all

subsequent motion speeds, not only the motion being executed.

 See Also MCC_GetOverrideRate()

Velocity

Time
V1 < V2

Velocity

Time
V3 > V4

V2

V1

V3

V4

MCC_OverrideSpeed(175)

MCC_OverrideSpeed(50)

Fig. 2.6.4 Override speed

Point-to-Point Motion Override Speed:

MCC_OverridePtPSpeed() forcibly and instantaneously changes the speed of each

axis. The parameter required for this command is the percentage of the altered speed

ratio for each axis over the original speed ratio and multiplied by 100. Please refer to

the previous description. Using MCC_OverridePtSpeed() will affect all subsequent

motion speeds, not only the point-to-point motion being executed.

 See Also MCC_GetPtPOverrideRate()

 IMP Series Motion Control Command Library User Manual

39

IV. Motion Dry Run

MCC_EnableDryRun() enables the dry run function. With this function, the

trajectory planning results are not sent from the motion control card, but the user can

still use MCC_GetCurPos() and MCC_GetPulsePos() to acquire the content of

trajectory planning. In addition, to obtain the motion path in advance, the user can also

utilize this information to simulate the motion trajectory on the screen.

 See Also MCC_DisableDryRun()

MCC_CheckDryRun()

V. Motion Delay

MCC_DelayMotion() forcibly delays the execution of the next motion command.

The unit of the delay time is ms; an example is displayed below:

MCC_Line(10, 10, 10, 0, 0, 0, 0, 0, 1); -------- A

MCC_DelayMotion(200, 1);

MCC_Line(15, 15, 15, 0, 0, 0, 0, 0, 1); -------- B

Once motion command A is executed, there is a 200 ms delay before continuing to

execute motion command B.

 See Also MCC_GetMotionStatus()

VI. Error Message

When conditions such as motion over travel (the motion exceeds software

boundary), the feed speed is greater than the maximum set value, the acceleration or

deceleration speed is greater than the maximum set value, arc command parameter error

or arc command execution error occurs, MCC_GetErrorCode() can be used to acquire

the content of error code (for the meaning of error code, please refer to ”IMP Series

Motion Control Command Library Reference Manual”).

When an error occurs in a group, this group will not execute another motion

 IMP Series Motion Control Command Library User Manual

40

command. Meanwhile, the user must manually use MCC_GetErrorCode() to identify

the reason for the error as well as solve it. MCC_ClearError() can then be used to clear

the error history and return the group to normal status.

2.6.4 Interpolation Time and Acceleration/Deceleration Time

I. Interpolation Time Setting

Speed

Pulse Speed

Pulse Acc.

Interpolation Time

Acc. Time

Dec. Time

Time

Fig. 2.6.5 Trajectory planning parameters

Interpolation time is the time gap to the next interpolation point (see Fig. 2.6.5).

The minimum setting is 1 ms and the maximum is 50 ms.

II. Maximum pulse speed setting

The maximum pulse speed limits the maximum of pulses that can be sent during

each interpolation time and thereby limits the maximum feed speed of each axis.

MCC_SetMaxPulseSpeed() sets the maximum pulse speed and can be set between 1 to

32767. The default is 32767.

 See Also MCC_GetMaxPulseSpeed()

 IMP Series Motion Control Command Library User Manual

41

III. Maximum Pulse limits Acceleration and Deceleration speed

The acceleration and deceleration durations are insufficient during the motion

process, and the acceleration and deceleration speed may exceed the value allowed by

the machine. Hence, this may damage the machine because of excessive motion inertia.

This setting can be used to limit the sent pulse difference within the tolerable range of

the machine. MCC_GetErrorCode() can determine whether acceleration or deceleration

speed has exceeded the set range within interpolation times

 MCC_SetMaxPulseAcc() sets the maximum pulse acceleration and deceleration

speed between 1 to 32767. The default is 32767.

 See Also MCC_GetMaxPulseAcc()

IV. Time Required for Acceleration/Deceleration

This command can either set the time needed to accelerate general or point-to-

point motion to a stable speed or the time needed to decelerate from a stable speed to a

stop. MCC_SetAccTime() and MCC_SetDecTime() set the acceleration and

deceleration time required for linear, arc, circular and helical motion.

MCC_SetPtPAccTime() and MCC_SetPtPDecTime() set the acceleration and

deceleration time required for point-to-point motion. Faster feed speeds often need

longer acceleration times. Therefore, MCC_SetAccTime() and MCC_SetDecTime()

are often used in combination with MCC_SetFeedSpeed(). Similarly,

MCC_SetPtPAccTime() and MCC_SetPtPDecTime() are often used in combination

with MCC_SetPtPSpeed().

The following example explains the requirements for different acceleration and

deceleration durations for different feed speed. Generally, users must customize the

content of SetSpeed() according to mechanism characteristics. SetSpeed() should be

used when it is necessary to change feed speed. To avoid the loss of steps,

MCC_SetFeedSpeed() should not be called directly, especially when using a stepper

motor.

void SetSpeed(double dfSpeed)

{

 IMP Series Motion Control Command Library User Manual

42

double dfAcc, dfTime;

dfAcc = 0.04; // set acceleration to 0.04 (UU/sec2)

if (dfSpeed > 0)

{

dfTime = dfSpeed / dfAcc;

 MCC_SetAccTime(dfTime);

 MCC_SetDecTime(dfTime);

MCC_SetFeedSpeed(dfSpeed);

}

}

2.6.5 System Status Check

Commands provided by the MCCL can verify current actual position, planned and

actual speeds, motion status, motion command stock, FMC stock in hardware FIFO,

and the content of motion command being executed.

MCC_GetCurPos() can be used to obtain current command position. Unit: UU.

MCC_GetPulsePos() can acquire the pulses sent from the control card. The only

difference between this value and the one obtained by MCC_GetCurPos() is that the

latter goes through mechanism parameter conversion.

If an encoder is installed in the system, the user can use MCC_GetENCValue() to

acquire current actual position (the value obtained is the encoder count).

MCC_GetPtPSpeed() can be used to acquire the feed speed ratio of point-to-point

motion trajectories and MCC_GetFeedSpeed() can acquire the feed speed of general

motion planning. For general motion, the user can also use MCC_GetCurFeedSpeed()

to acquire current actual tangential speed and MCC_GetSpeed() to acquire current

actual feed speed of each axis.

The return value obtained from calling MCC_GetMotionStatus() can verify the

 IMP Series Motion Control Command Library User Manual

43

current motion status. If the return value is GMS_RUNNING, it means the system is in

motion; if the value is GMS_STOP, it means the system has stopped and there is no

stock command to be executed; if the value is GMS_HOLD, it means the system has

been paused by using MCC_HoldMotion(); if the value is GMS_DELAYING, it means

the system is currently delayed by using MCC_DelayMotion().

MCC_GetCurCommand() can be used to obtain the information related to the

motion command currently being executed. The command declaration of

MCC_GetCurCommand() is as follows:

MCC_GetCurCommand(COMMAND_INFO *pstCurCommand,

WORD wGroupIndex)

COMMAND_INFO stores the content of the motion command currently being executed.

It is defined as:

typedef struct _COMMAND_INFO

{

 int nType;

int nCommandIndex;

 double dfFeedSpeed;

 double dfPos[8];

} COMMAND_INFO;

nType: Motion command type

0. Point-to-Point Motion

1. Linear motion

2. Clockwise arc, or clockwise circular motion

3. Counter-clockwise arc, or cunter-clockwise circular motion

4. Clockwise helical motion

5. Counter-clockwise helical motion

6. Motion delay

7. Enable motion blending

8. Disable motion blending

 IMP Series Motion Control Command Library User Manual

44

9. Enable in position confirmation

10. Disable in position confirmation

nCommandIndex: Index for this motion command

dfFeedSpeed:

General motion feed speed

Point-to-Point Motion feed speed ratio

Motion delay current remaining delay time (unit: ms)

dfPos[]: Required destination position

MCC_GetCommandCount() can be used to obtain the motion command in the

stock that has not been executed yet. This stock does not include the motion command

currently being executed.

MCC_GetCurPulseStockCount() can be used to obtain the fine movement

command (FMC) stock in the IMP. During continuous motion, the default FMC stock

is 60. Users can set FMC stock to ensure stable motion performance. If FMC stock

equals 0, it is necessary to extend interpolation time (please refer to the previous

description related to interpolation time). In addition, extending of interpolation time

should also be considered if the lag appears in the user interface display.

 IMP Series Motion Control Command Library User Manual

45

2.7 Position Control

The MCCL provides the following for position control functions:

1. Closed Loop Proportional Gain Setting

2. In Position Confirmation

3. Error Tracking

4. Handling Positional Closed Loop Control Failure

5. Gear Backlash and Gap Compensation

The following sections will introduce the content and the usage of each function.

2.7.1 Closed Loop Proportional Integration Differentiation Forward Feed Gain

(PID+FF Gain) Setting

Use MCC_SetPGain(), MCC_SetIGain(), MCC_SetDGain() and

MCC_SetFGain() to set the PID+FF gain parameters in closed-loop control. The

parameter can be set within the range between 0 to 255. The PID+FF gain parameters

can be adjusted as follows: After the driver is configured as voltage command, use

the [View Profile] in Integrated Test Environment (ITE) provided by the installation

CD-ROM to adjust the gain according to the tracking error (the tracking error is the

difference between the command position and the actual position).

 See Also MCC_GetPGain()

MCC_GetIGain()

MCC_GetDGain()

MCC_GetFGain()

2.7.2 In Position Confirmation

The in position confirmation function provided by the MCCL only continues the

next command after confirming that the motion command being executed has arrived

its destination (within the error tolerance range). Otherwise, the subsequent command

will be aborted and an error record will be produced (the user can choose to ignore this

message).

This function can be enabled by calling MCC_EnableInPos(). Once enabled, the

 IMP Series Motion Control Command Library User Manual

46

MCCL will start checking if the in position confirmation condition is met after sending

the last FMC of that motion command. If it is in position, then the next motion

command will be executed. However, if the command is still not in a position after the

maximum check time set (use (MCC_SetInPosMaxCheckTime() to set) ends, the

subsequent command will be aborted and an error record will be produced (refer to Fig.

2.7.1 for the definition of maximum check time).

Maximum check time

Final FMC sent

Destination

Original

position

Command

position curve

Position

Time

Fig. 2.7.1 Maximum check time diagram

The MCCL provides four types of in position confirmation mode. The user can

select the appropriate type by using MCC_SetInPosMode() command. Definitions and

descriptions of each mode are detailed as follows:

Mode IPM_ONETIME_BLOCK:

When the position error of each axis in the group is smaller than or equal to error

tolerance range (can be set by using MCC_SetInPosToleranceEx(); unit: UU), the

in position criteria of this mode are satisfied (see Fig. 2.7.2).

If the criteria have not been satisfied before the maximum check time ends, the

subsequent command will be aborted and an error record will be produced (can

obtain by MCC_GetErrorCode()).

End point

 IMP Series Motion Control Command Library User Manual

47

Maximum check time

Final FMC sent

Destination

Original

position

Command

position curve

Position

Time

Actual position

curve

Range of error

tolerance

In position

confirmation

Fig. 2.7.2 IPM_ONETIME_BLOCK mode successful in position diagram

Mode IPM_ONETIME_UNBLOCK:

The in position criteria of this mode are identical to those of

IPM_ONETIME_BLOCK. The only difference is that when the in position criteria

have not been satisfied before the maximum check time ends, the subsequent

command will be executed directly and an error record will not be produced.

Mode IPM_SETTLE _BLOCK:

When the position error of each axis in the group is smaller than or equal to error

tolerance range (can be set by using MCC_SetInPosToleranceEx(); unit: UU) and

remains a stable period (can be set by using MCC_SetInPosSettleTime(); unit:

ms), the in position criteria of this mode are satisfied (see Fig. 2.7.3).

If the criteria have not been satisfied before the maximum check time ends, the

subsequent command will be aborted and an error record will be produced (can

obtain by MCC_GetErrorCode()).

End point

 IMP Series Motion Control Command Library User Manual

48

Maximum check time

Final FMC sent

Destination

Original

position

Command

position curve

Position

Time

Actual position

curve

Range of error

tolerance

In position

confirmation
Settle time

Fig. 2.7.3 IPM_SETTLE _BLOCK mode in position successful diagram

Mode IPM_SETTLE _UNBLOCK:

The in position criteria of this mode are identical to those of

IPM_SETTLE_BLOCK. The only difference is that when the in position criteria

have not been satisfied before the maximum check time ends, the subsequent

command will be executed directly and an error record will not be produced.

The greater the in position tolerance error, the shorter the time required for

completing in position confirmation. However, the error between the motion command

connection point and the trajectory path will be greater (and will be smaller in the

converse situation). As Fig. 2.7.4 shows, the smaller in position tolerance error will

produce a more precise trajectory error (Error 1 < Error 2); hence, the in position

tolerance error should be set appropriately according to different system functions.

Meanwhile, MCC_GetInPosStatus() can be used to obtain the in position status of each

motion axis in the group.

End point

 IMP Series Motion Control Command Library User Manual

49

Planned motion trajectory

Error 1
Error 2

Actual motion trajectory A Actual motion trajectory B

Fig. 2.7.4 Effect of the in position error on path error

 See Also MCC_GetInPosToleranceEx()

MCC_DisableInPos()

CAUTION

1. Because the in position confirmation function is used to compare if the

actual position and the target position are within the tolerance error range.

Remember verify the encoder connection.

2. Once the system has been verified as successfully the in position

confirmation, further in position verification will not be used (meaning that

it will hold the in position status even if the actual position leaves the in

position tolerance range; see Fig. 2.7.2) until the new motion command is

given.

2.7.3 Tracking Error

The error between the command position and actual position of the motion axis at

any given moment is called as the tracking error (see Fig. 2.7.5).

Generally, the tracking error size is related to settings such as mechanism

characteristics, closed-loop proportional gain and motion acceleration. An excessively

large tracking error means the motion has deviated from (or lagged) the trajectory path

too much and may even have had a collision.

To use MCC_SetTrackErrorLimit() to set error tolerance range and then use

MCC_EnableTrackError() to activate this function. After the function has been enabled,

 IMP Series Motion Control Command Library User Manual

50

once the tracking error of motion axis exceeds the range, the subsequent command

trajectory of this group will be stopped and an error record will be produced.

MCC_GetErrorCode() can be used to acquire the error code: 0xF801 to 0xF808

respectively shows the excessively large tracking error of X, Y, Z, U, V, W, A and B.

Command

position curve

Position

Time

Actual position

curve

Tracking

error

Fig. 2.7.5 Tracking error diagram

 See Also MCC_DisableTrackError()

 MCC_GetTrackErrorLimit()

Note

When using the MCCL, any non-zero return value for MCC_GetErrorCode()

indicates that the group has produced an error record. Refer to the following procedure

to handle this:

1. Determine error type and conduct the corresponding solution (users should

manually define this).

2. Call MCC_ClearError() to clear the error record.

3. The system continues normal operation.

 IMP Series Motion Control Command Library User Manual

51

2.7.4 Handling Positional Closed Loop Control Failure

 When the closed-loop position control function fails because the proportional

gain parameter is incorrectly set or for other operational reasons, the system will be in

a non-controlled state. The user can set the value of allowable positive/negative pulse

error by MCC_SetErrorCountThreshold(). When the system error register is larger

than the setting, it will promptly alert the user that the system is in a non-controlled

state and the motion control card will automatically produce an interruption signal. The

user can customize a routine that interrupts closed-loop position control and serially

connects to the system. This customized routine will be called when the motion axis

closed-loop position control function fails, and the user can design the handling

procedure into this customized routine. The procedures to use this function is detailed

as follows:

Step 1: Use MCC_SetPCLRoutine() to serially connect the customized interrupt

service routine

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall *PCLISR)(PCLINT*)

For example, the customized command can be designed as follows:

_stdcall MyPCLFunction(PCLINT *pstINTSource)

{

// determine whether the routine was triggered when the position error register is

greater than the set positive error in Channel 0

if (pstINTSource->OVP0)

{

 // handling procedure of closed-loop position control function failure in

Channel 0

}

 IMP Series Motion Control Command Library User Manual

52

// determine whether the routine was triggered when the position error register is

smaller than the set negative error in Channel 0

if (pstINTSource->OVN0)

{

 // handling procedure of position closed loop control function failure in Channel

0

}

// determine whether the routine was triggered when the position error register

is greater than the set positive error in Channel 1

if (pstINTSource->OVP1)

{

 // handling procedure of closed-loop position control function failure in

Channel 1

}

// determine whether the routine was triggered when the positional error register

is smaller than the negative error setting in Channel 1

if (pstINTSource->OVN1)

{

 // handling procedure of closed-loop position control function failure in

Channel 1

}

// determine whether the routine was triggered when the positional error

register is greater than the set positive error in Channel 2

if (pstINTSource->OVP2)

{

 // handling procedure of closed-loop position control function failure in

Channel 2

}

 IMP Series Motion Control Command Library User Manual

53

// determine whether the routine was triggered when the position error register is

smaller than the set negative error in Channel 2

if (pstINTSource->OVN2)

{

 // handling procedure of position closed loop control function failure in Channel

2

}

// determine whether the routine was triggered when the positional error

register is greater than the set positive error in Channel 3

if (pstINTSource->OVP3)

{

 // handling procedure of position closed loop control function failure in Channel

3

}

// determine whether the routine was triggered when the positional error register

is smaller than the set negative error in Channel 3

if (pstINTSource->OVN3)

{

 // handling procedure of position closed loop control function failure in Channel

3

}

A routine such as“else if (pstINTSource->OVP1)” cannot be used, because

pstINTSource->OVP0 and pstINTSource->OVP1 may not be 0 simultaneously.

Later, use MCC_SetPCLRoutine (MyPCLFunction) to serially connect the

customized ISR. When the customized is triggered during execution, the system can

use the pstINTSource parameter declared as PCLINT in the customized routine to

determine which trigger criterion was satisfied when the customized routine was called.

The definition of PCLINT is as follows:

 IMP Series Motion Control Command Library User Manual

54

typedef struct _PCL_INT

{

BYTE OVP0;

BYTE OVP1;

BYTE OVP2;

BYTE OVP3;

BYTE OVP4;

BYTE OVP5;

BYTE OVP6;

BYTE OVP7;

BYTE OVN0;

BYTE OVN1;

BYTE OVN2;

BYTE OVN3;

BYTE OVN4;

BYTE OVN5;

BYTE OVN6;

BYTE OVN7;

} PCLINT;

If the PCLINT field value does not equal 0, the reasons for the customized routine

call, by a field value, are presented below:

OVP0 Channel 0 position error register is greater than the set positive error

OVP1 Channel 1 position error register is greater than the set positive error

OVP2 Channel 2 position error register is greater than the set positive error

OVP3 Channel 3 position error register is greater than the set positive error

OVP4 Channel 4 position error register is greater than the set positive error

OVP5 Channel 5 position error register is greater than the set positive error

OVP6 Channel 6 position error register is greater than the set positive error

OVP7 Channel 7 position error register is greater than the set positive error

 IMP Series Motion Control Command Library User Manual

55

OVN0 Channel 0 position error register is smaller than the set negative error

OVN1 Channel 1 position error register is smaller than the set negative error

OVN2 Channel 2 position error register is smaller than the set negative error

OVN3 Channel 3 position error register is smaller than the set negative error

OVN4 Channel 4 position error register is smaller than the set negative error

OVN5 Channel 5 position error register is smaller than the set negative error

OVN6 Channel 6 position error register is smaller than the set negative error

OVN7 Channel 7 position error register is smaller than the set negative error

2.7.5 Gear Backlash and Gap Compensation

When the platform controls position, deficiencies created by the gear or screw

will cause position error during platform movements, such as pitch or backlash error

(see Fig. 2.7.6).

Pitch Error

d d + ε

Errors of each pitch length

caused by screw production

Backlash Error

b

Errors caused by the reverse rotation

resulting from gear mesh

Fig. 2.7.6 Pitch error and backlash error

The user can divide the platform into multiple small segments (see Fig. 2.7.7) and

use a laser instrument to scan the platform back and forth once; record the number of

segment error to make a forward and backward compensation table. This compensation

table is a two-dimensional array storing the compensation amount of all points in each

axis. All compensation points are based on one measure point (see Fig. 2.7.7). The user

must set dwInterval, wHome_No and forward and backward compensation table

(nForwardTable and nBackwardTable) and call the compensation setting command

MCC_SetCompParam() and MCC_UpdateCompParam() to run the compensation

function. The MCCL provides 256 compensation points for each axis. Each axis of the

 IMP Series Motion Control Command Library User Manual

56

platform can be divided into a maximum of 255 compensation segments; linear

compensation will be used between each segment.

When using the compensation function, the content of compensation

parameter must cover the entire work course of the platform to avoid abnormal

operations. Therefore, the compensation function should be enabled before the go

home action has been completed. MCC_GetGoHomeStatus() can be used in

combination to verify if the go home action has been completed (the return value 1

means that the go home action has been completed).

To stop the compensation function, set dwInterval in compensation parameters as

0. For example, execute the following programming code to stop Channel 0

compensation:

SYS_COMP_PARAM stUserCompParam;

stUserCompParam.dwInterval = 0;

MCC_SetCompParam(&stUserCompParam, 0, 0);

MCC_UpdateCompParam();

dwInternal wHome_No

Forward

Backward

0 1 2 3 4 5 6 7

Fig. 2.7.7 Compensation segment

Compensation parameters must be set before using the compensation function. The

definition of compensation parameters are as follows:

typedef struct _SYS_COMP_PARAM

 IMP Series Motion Control Command Library User Manual

57

{

DWORD dwInterval;

 WORD wHome_No;

 WORD wPaddle;

 int nForwardTable[256];

 int nBackwardTable[256];

} SYS_COMP_PARAM;

dwInterval :

This is the interval between compensation segments in pulses. If this value is

smaller than or equal 0, compensation function will not be performed.

wHome_No: Compensation index for the location of each axis’s home position.

wPaddle: Reserved field

nForwardTable: Indicator variable for forward compensation table

nBackwardTable: Indicator variable for backward compensation table

Take Fig. 2.7.7 as an example: If the working area of X-axis is divided into 7

compensation segments, there are a total of 8 compensation points need to be measured

(0 to 7). Home is located in compensation point 4 and this means that the system will

believe it is currently at compensation point 4 after go home is completed. If dwInterval

is set as 10000 (pulses), the forward work range is 10000 × (7 – 4) = 30000 (pulses)

and the backward work range is 10000 × (4 - 0) = 40000 (pulses). Mechanism

parameters dwHighLimit and dwLowLimit must match these settings. The

compensation parameter of each axis must be set separately; below is an example of

setting the X-axis compensation parameters.

 SYS_COMP_PARAM stUserCompParam;

 stUserCompParam.dwInterval = 10000;

 IMP Series Motion Control Command Library User Manual

58

 stUserCompParam.wHome_No = 4;

 stUserCompParam.nForwardTable[0] = 22; // unit: pulse

 stUserCompParam.nForwardTable[1] = 20;

 stUserCompParam.nForwardTable[2] = 15;

 stUserCompParam.nForwardTable[3] = 11;

 stUserCompParam.nForwardTable[4] = 0; // home position, set as 0

 stUserCompParam.nForwardTable[5] = 10;

 stUserCompParam.nForwardTable[6] = 12;

 stUserCompParam.nForwardTable[7] = 15;

 MCC_SetCompParam(&stUserCompParam, 0, CARD_INDEX);

 MCC_UpdateCompParam();

As explained previously, the user can divide the platform into a maximum of 255

compensation segments and conduct compensation in each segment using the linear

compensation method. For example, if the X axis (currently located at point 4) needs to

move forward 15000 pulses, from the backlash error compensation table (see

stUserCompParam), it is known that the position is between the segment defined by

nForwardTable[5] and nForwardTable[6] (because the position is between 10000 pulses

and 20000 pulses). The value for nForwardTable[5] is 10, nForwardTable[6] is= 12,

and nForwardTable[6]- nForwardTable[5]= 12 - 10 = 2; so the system actually sends a

total of 15000 + 10 + (int)((15000 – 10000)/ 10000 × 2) = 15000 + 10 + 1 = 15011

pulses.

 IMP Series Motion Control Command Library User Manual

59

2.8 Go Home

Users can set the go home execution order for each axis, please refer to the

description in section 2.8.2-”Enabling Go Home”.

The settings of go home parameters included acceleration time, deceleration time,

speed, go home direction and mode. The content of go home parameter is detailed as

follows. For the meaning of each parameter, please refer to the description in section

2.4.3-”Go Home Parameters”.

Go home parameters (SYS_HOME_CONFIG):

typedef struct _SYS_HOME_CONFIG

{

WORD wMode;

 WORD wDirection;

 WORD wSensorMode;

 WORD wPaddle0;

 int nIndexCount;

 int nPaddle1;

 double dfAccTime;

 double dfDecTime;

 double dfHighSpeed;

 double dfLowSpeed;

 double dfOffset;

} SYS_HOME_CONFIG;

2.8.1 Go Home Mode Description

wMode in go home parameters is used to designate the mode used in go home

motion. The modes that require checking home sensor signals will confirm if the

starting point is at the correct position first before conducting go home motion. In the

following two conditions, it is defined that starting points are not at correct positions

 IMP Series Motion Control Command Library User Manual

60

(assume the initial direction of go home motion is to the right):

a. Go Home motion starting point is in home sensor area (see Case 2 in Fig. 2.8.1)

b. According to the indicated motion direction, it is impossible to enter home sensor

area and will trigger a limit switch (see Case 3 in Fig. 2.8.1)

If the above two situations occur, the MCCL will implement the following handling

procedure:

a. Move at the speed set in dfHighSpeed in the indicated direction until an

emergency stop is executed when the limit switch is triggered.

b. Move at the speed set in dfHighSpeed to the reverse direction until entering home

sensor area and continue moving. Decelerate to stop until exiting home sensor

area.

c. Begin to conduct the true go home motion (the action of Case 1)

 For various go home modes introduced in subsequent sections of this manual,

Case 2 and Case 3 may occur if these modes are required to be combined with

detecting home sensor signals; therefore, Case 2 and Case 3 will not be further

explained. We will only explain the general situation Case 1.

Meanwhile, acceleration time dfAccTime represents the time used to accelerate

from 0 to dfHighSpeed (or dfLowSpeed); the deceleration time dfDecTime represents

the time used to decelerate from dfHighSpeed (or dfLowSpeed) to 0. The “emergency

stop” means an immediate stop of the motion axis without deceleration.

 IMP Series Motion Control Command Library User Manual

61

Hom

e

Limit

Case 1

Case 2

Case 3

Index

Start Point

Start Point

Start Point

Begin Case 1 act ion

Begin Case 1 act ion

Fig. 2.8.1 Effect of different starting points of go home motion

 Operational characteristics of each mode are explained as follows:

a. Mode 3 (wMode = 3) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Move at the speed set in dfHighSpeed in the indicated direction, decelerate to a

stop when entering home sensor region and complete the action. (At this point, the

platform will stop at themachine home position and the MCCL will move the

platform to the working home position based on the parameter dfOffset (for

details, refer to 2.4.1 & 2.4.3) and thereby complete all actions. This rule will

apply to all subsequent modes).

HOME

 IMP Series Motion Control Command Library User Manual

62

Home

Case 1

b. Mode 4 (wMode = 4) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

decelerate to a stop when entering the home sensor region.

Step 2: Move at the speed set in dfHighSpeed in the reverse direction and

decelerate to a stop after exiting the home sensor region.

Step 3: Move at the speed set in dfLowSpeed in the indicated direction, execute

an emergency stop after entering the home sensor region and thereby

complete the action.

Home

Case 1

c. Mode 5 (wMode = 5) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

start decelerating to dfLowSpeed after entering the home sensor region

while simultaneously searching for the indicated index number (the

example figure is set to search for index number 1, i.e. nIndexCount =

1).

Step 2: Stop promptly after the indicated index signal is triggered and

complete the action.

 IMP Series Motion Control Command Library User Manual

63

Home

Case 1

INDEX
0 1 2

d. Mode 6 (wMode = 6) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

start searching for the indicated index number after entering the home

sensor region (the example figure is set to search for index number 1,

i.e. nIndexCount = 1).

Step 2: Decelerate to a stop after the indicated index signal is triggered and

complete the action.

Home

Case 1

INDEX
0 1 2

e. Mode 7 (wMode = 7) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

decelerate to a stop when entering the home sensor region.

Step 2: Move at the speed set in dfLowSpeed in the reverse direction and start

 IMP Series Motion Control Command Library User Manual

64

searching for the indicated index number after exiting the home sensor

region (the example figure is set to search for index number 1, i.e.

nIndexCount = 1).

Step 3: Stop promptly after the indicated index signal is triggered and

complete the action.

Home

Case 1

INDEX
012

f. Mode 8 (wMode = 8) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

decelerate to a stop when entering the home sensor region.

Step 2: Move at the speed set in dfHighSpeed in the reverse direction and start

searching for the indicated index number after exiting the home sensor

region (the example figure is set to search for index number 1, i.e.

nIndexCount = 1).

Step 3: Decelerate to a stop after the indicated index signal is triggered and

complete the action.

 IMP Series Motion Control Command Library User Manual

65

Home

Case 1

INDEX
012

g. Mode 9 (wMode = 9) (There is no Case 2 or Case 3 in this mode)

Move at the speed set in dfHighSpeed in the indicated direction until an emergency

stop is executed when the limit switch is triggered and complete the action.

Case 1

Limit

h. Mode 10 (wMode = 10) (There is no Case 2 or Case 3 in this mode)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction until an

emergency stop is executed when the limit switch is triggered.

Step 2: Move at the speed set in dfLowSpeed in the reverse direction and start

searching for the indicated index number (the example figure is set to

search for index number 1, i.e. nIndexCount = 1).

Step 3: Stop promptly after the indicated index signal is triggered and

complete the action.

 IMP Series Motion Control Command Library User Manual

66

Case 1

Limit

INDEX

nIndexCount = 1 0

i. Mode 11 (wMode = 11) (There is no Case 2 or Case 3 in this mode)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction until an

emergency stop is executed when the limit switch is triggered.

Step 2: Move at the speed set in dfHighSpeed in the reverse direction and start

searching for the indicated index number (the example figure is set to

search for index number 1, i.e. nIndexCount = 1).

Step 3: Decelerate to a stop after the indicated index signal is triggered and

complete the action.

Case 1

Limit

INDEX

nIndexCount = 1 0

j. Mode 12 (wMode = 12) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

decelerate to a stop when entering the home sensor region.

 IMP Series Motion Control Command Library User Manual

67

Step 2: Move at the speed set in dfLowSpeed in the reverse direction to exit the

home sensor region.

Step 3: Stop promptly after leaving the home sensor region and complete the

action.

Home

Case 1

k. Mode 13 (wMode = 13) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

start searching for the indicated index number after entering the home

sensor region (the example figure is set to search for index number 1,

i.e. nIndexCount = 1).

Step 2: After the indicated index signal is triggered, it will decelerate to a stop.

Step 3: Move at the speed set in dfLowSpeed in the reverse direction to return

to the position where the index signal is triggered and complete the

action.

Home

Case 1

INDEX
0 1 2

 IMP Series Motion Control Command Library User Manual

68

l. Mode 14 (wMode = 14) (The following description is only for Case 1; for Case 2

and Case 3, please refer to the previous description.)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

decelerate to a stop when entering the home sensor region.

Step 2: Move at the speed set in dfHighSpeed in the reverse direction and start

searching for the indicated index number after exiting the home sensor

region (the example figure is set to search for index number 1, i.e.

nIndexCount = 1).

Step 3: After the indicated index signal is triggered, it will decelerate to a

stop.Step 4: Move at the speed set in dfLowSpeed in the reverse

direction to return to the position where the index signal was triggered

and complete the action.

Home

Case 1

INDEX
012

m. Mode 15 (wMode = 15) (There is no Case 2 or Case 3 in this mode)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction until an

emergency stop is executed when the limit switch is triggered.

Step 2: Move at the speed set in dfHighSpeed in the reverse direction and start

searching for the indicated index number (the example figure is set to

search for index number 1, i.e. nIndexCount = 1).

Step 3: After the indicated index signal is triggered, it will decelerate to a stop.

Step 4: Move at the speed set in dfLowSpeed in the reverse direction to return

to the position where the index signal was triggered and complete the

action.

 IMP Series Motion Control Command Library User Manual

69

Case 1

Limit

INDEX

nIndexCount = 1 0

n. Mode 16 (wMode = 16) (There is no Case 2 or Case 3 in this mode)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction and

decelerate to a stop when the limit switch is triggered.

Step 2: Move at the speed set in dfLowSpeed in the reverse direction to exit the

limit switch region.

Step 3: Stop promptly when leaving the limit switch region and complete the

action.

Case 1

Limit

2.8.2 Enabling Go Home

The procedure for enabling go home is detailed as follows.

1. First, use MCC_SetHomeConfig() to set the go home parameters (please refer to the

description in previous sections)

 IMP Series Motion Control Command Library User Manual

70

2. Call MCC_Home(

int nOrder0, int nOrder1, int nOrder2,

int nOrder3, int nOrder4, int nOrder5, ,

int nOrder6, int nOrder7, WORD wCardIndex)

where

nOrder0 ~ nOrder7 Go home execution order for each axis

wCardIndex motion control card index

 The go home execution order for each axis can be set from 0 to 7, and the set

value can be repeated. The MCCL will first execute the go home action on the motion

axes with the order setting 0. When these actions are completed, it will execute the go

home execution for motion axes set as 1 and follow this principle to finish the go home

action of all motion axes. The order set as 255 indicates that the go home action will

not be performed on this motion axis.

MCC_AbortGoHome() can be used during the go home process to stop the go

home action. The return value from MCC_GetGoHomeStatus() can also be used to

identify if the go home action has been completed. If the return value is 1, it indicates

that the go home action has been completed and the value of 0 indicates that the action

is still under processing.

CAUTION

1. The go home process can be divided into 3 phases no matter which mode is

implemented:

Phase 1: Search for the home sensor or the limit switch

Phase 2: Search for the indicated index signal

Phase 3: Move from the machine home position to the working home

position

2. When there are multiple axes performing go home at the same time, all axes

must complete Phase 1 before entering Phase 2 together. Similarly, all axes

must complete Phase 2 before entering Phase 3 together. Therefore, it is

possible and normal that during the go home process, an axis that has

completed the given phase has to stop moving and wait until other axes

 IMP Series Motion Control Command Library User Manual

71

complete the same phase.

The following table lists the phases included in each go home mode:

Mode Phase 1 Phase 2 Phase 3 Description

3 ˇ ˇ

No need to execute 2, but still has to

wait until all axes complete Phase 2

before proceeding Phase 3 together.

4 ˇ ˇ See Mode 3

5 ˇ ˇ ˇ

6 ˇ ˇ ˇ

7 ˇ ˇ ˇ

8 ˇ ˇ ˇ

9 ˇ ˇ See Mode 3

10 ˇ ˇ ˇ

11 ˇ ˇ ˇ

12 ˇ ˇ See Mode 3

13 ˇ ˇ ˇ

14 ˇ ˇ ˇ

15 ˇ ˇ ˇ

16 ˇ ˇ See Mode 3

 IMP Series Motion Control Command Library User Manual

72

2.9 Local I/O Control

Local I/O refers to the input and output connections built in the IMP and is different

from the Asynchronous Remote I/O Board (IMP-ARIO) that can expand to a maximum

of 512 input and 512 output connections (IMP-ARIO is optional). Each of these I/O

connections has its specific purpose; however, if these specific purposes are not

required in the actual application (for example, when the limit switch check function or

output servo-on/off signal is not necessary), these I/O connections can be used as

general I/O connections as well.

2.9.1 Input Connection Status

The built-in input connections on the IMP include:

a. 8 home sensor signal input connections. MCC_GetHomeSensorStatus() can be used

to acquire the home sensor input signal status.

b. 8 positive limit switch signal input connections and 8 negative limit switch signal

input connections. MCC_GetLimitSwitchStatus() can be used to acquire the limit

switch input signal status.

c. 1 emergency stop switch signal input connection. MCC_GetEmgcStopStatus() can

be used to acquire its input signal status.

2.9.2 Signal Output Control

The built-in output connections on the IMP include:

a. 8 servo-on/off signal control connections. MCC_SetServoOn() and

MCC_SetServoOff() can be used to output the servo-on/off signal.

b. 1 position ready signal control connection. MCC_EnablePosReady() and

 IMP Series Motion Control Command Library User Manual

73

MCC_DisablePosReady() can be used to output or cancel the position ready signal.

To ensure the safety of the operator, after using MCC_InitSystem() to successfully

activate the system and the system is verified to be under normal operation, it is

necessary to use the position ready signal additionally to activate external circuits

(such as the driver or motor circuits).

c. 8 LED indicators which can be used to display the output indicator.

2.9.3 Input Signal Triggered Interrupt Service Routine

Certain limit switch input connection signals can automatically trigger the user-

customizable ISR. Limit switches that can trigger ISR include:

a. a total of 24 inputs of the IMP-2, including:

Channel 0 Limit Switch +(OTP0)

Channel 1 Limit Switch +(OTP1)

Channel 2 Limit Switch +(OTP2)

Channel 3 Limit Switch +(OTP3)

Channel 4 Limit Switch +(OTP4)

Channel 5 Limit Switch +(OTP5)

Channel 6 Limit Switch +(OTP6)

Channel 7 Limit Switch +(OTP7)

Channel 0 Limit Switch -(OTN0)

Channel 1 Limit Switch -(OTN1)

Channel 2 Limit Switch -(OTN2)

Channel 3 Limit Switch -(OTN3)

Channel 4 Limit Switch -(OTN4)

Channel 5 Limit Switch -(OTN5)

Channel 6 Limit Switch -(OTN6)

Channel 7 Limit Switch -(OTN7)

Channel 0 Home Switch (HOME0)

 IMP Series Motion Control Command Library User Manual

74

Channel 1 Home Switch (HOME1)

Channel 2 Home Switch (HOME2)

Channel 3 Home Switch (HOME3)

Channel 4 Home Switch (HOME4)

Channel 5 Home Switch (HOME5)

Channel 6 Home Switch (HOME6)

Channel 7 Home Switch (HOME7)

The procedure of using “input connection triggered interrupt service routine” is detailed

below:

Step 1: Use MCC_SetLIORoutineEx() to serially connect the customized

interrupt service routine

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall *LIOISR)(LIOINT*)

For example, the customized command can be designed as follows:

stdcall MyLIOFunction(LIOINT *pstINTSource)

{

// determine whether the routine was called because Channel 0 Limit Switch +

was triggered

if (pstINTSource->OTP0)

{

 // handling procedure when Channel 0 Limit Switch + is triggered

}

// determine whether the routine was called because Channel 1 Limit Switch +

was triggered

if (pstINTSource->OTP1)

{

 IMP Series Motion Control Command Library User Manual

75

 // handling procedure when Channel 1 Limit Switch + is triggered

}

}

A routine such as ”else if (pstINTSource->OTP1)” cannot be used, because

pstINTSource->OTP0 and pstINTSource->OTP1 may not be 0 simultaneously.

Later, use MCC_SetLIORoutineEx (MyLIOFunction) to serially connect the

customized ISR. When the customized is triggered during execution, the system can

use the pstINTSource parameter declared as LIOINT imported into the customized

routine to determine which input connection is triggered when the customized routine

was called. The definition of LIOINT is as follows:

typedef struct _LIO_INT

{

 BYTE OTP0;

 BYTE OTP1;

 BYTE OTP2;

 BYTE OTP3;

 BYTE OTP4;

 BYTE OTP5;

 BYTE OTP6;

 BYTE OTP7;

 BYTE OTN0;

 BYTE OTN1;

 BYTE OTN2;

 BYTE OTN3;

 BYTE OTN4;

 BYTE OTN5;

 BYTE OTN6;

 BYTE OTN7;

 BYTE HOME0;

 BYTE HOME1;

 BYTE HOME2;

 BYTE HOME3;

 IMP Series Motion Control Command Library User Manual

76

 BYTE HOME4;

 BYTE HOME5;

 BYTE HOME6;

 BYTE HOME7;

} LIOINT;

The connections corresponding to each field in LIOINT are defined below:

 IMP-2

OTP0 Channel 0 Limit Switch+

OTP1 Channel 1 Limit Switch+

OTP2 Channel 2 Limit Switch+

LDI3 Channel 3 Limit Switch+

LDI4 Channel 4 Limit Switch+

OTP5 Channel 5 Limit Switch+

OTP6 Channel 6 Limit Switch+

OTP7 Channel 7 Limit Switch+

OTN0 Channel 0 Limit Switch-

OTN1 Channel 1 Limit Switch-

OTN2 Channel 2 Limit Switch-

OTN3 Channel 3 Limit Switch-

OTN4 Channel 4 Limit Switch-

OTN5 Channel 5 Limit Switch-

OTN6 Channel 6 Limit Switch-

OTN7 Channel 7 Limit Switch-

HOME0 Channel 0 HOME Switch

HOME1 Channel 1 HOME Switch

HOME2 Channel 2 HOME Switch

HOME3 Channel 3 HOME Switch

HOME4 Channel 4 HOME Switch

HOME5 Channel 5 HOME Switch

HOME6 Channel 6 HOME Switch

HOME7 Channel 7 HOME Switch

 IMP Series Motion Control Command Library User Manual

77

If the value of these fields does not equal 0, then currently the connection

corresponding to that field has a signal input. For example, if the MyLIOFunction()

input parameter pstINTSource->OTP2 is not 0, it contacts with Channel 2 Limit Switch

+.

Step 2: Use MCC_SetLIOTriggerType() to set the trigger type

The trigger type can be set as rising edge, falling edge or level change. The input

parameters of MCC_SetLIOTriggerType() can be:

LIO_INT_NO Not triggered

LIO_INT_RISE Rising edge (default)

LIO_INT_FALL Falling edge

LIO_INT_LEVEL Level change

Step 3: Finally, use MCC_EnableLIOTrigger() to enable the “Input Signal

Triggered Interrupt Service Routine” function. MCC_DisableLIOTrigger() can be

used to disable this function.

 IMP Series Motion Control Command Library User Manual

78

2.10 Encoder Control

The encoder control functions provided by the MCCL include counts per encoder

cycle selection, count acquisition, count latch, index trigger, and automatic count

comparison and trigger.

Before using the encoder control functions, the fields related to encoder

characteristics in mechanism parameters must be set correctly. Please refer to the

description in section 2.4.2-“Encoder Parameters” for details.

2.10.1 General Control

If the encoder parameter (see section 2.4.2) wType is set as ENC_TYPE_AB,

meaning the input form is set as A/B Phase, then MCC_SetENCInputRate() can be used

to set the counts per encoder cycle.

The counts per encoder cycle can be ×1, ×2 or ×4, representing 1, 2 or 4 counts

per encoder cycle respectively.

The counts per encoder cycle can be 1, 2, or 4, representing the counts per encoder

cycle of×1, ×2 or ×4 respectively.

If the mechanism parameter wCommandMode is set to OCM_VOLTAGE (using

V Command) and the counts per encoder cycle has been changed, then it is necessary

to reset the mechanism parameter dwPPR. MCC_GetENCValue() can be used to obtain

the encoder count.

2.10.2 Count Latch

The MCCL provides a “count latch” function that allows users to set the signal

sources triggering the encoder count to be recorded in the latched register.

MCC_GetENCLatchValue() can be used to acquire the record in the latched register.

The procedure of using “count latch” is detailed below:

 IMP Series Motion Control Command Library User Manual

79

Step 1: Use MCC_SetENCLatchSource() to set the signal source that will

trigger the count latch action.

All of the following trigger sources can trigger the encoder count to be recorded

in the latched register. MCC_SetENCLatchSource() is used to set the trigger source.

Multiple criteria can be obtained during setting. These trigger signal sources include:

ENC_TRIG_NO No trigger signal source selected

ENC_TRIG_INDEX0 Index signal in encoder Channel 0

ENC_TRIG_INDEX1 Index signal in encoder Channel 1

ENC_TRIG_INDEX2 Index signal in encoder Channel 2

ENC_TRIG_INDEX3 Index signal in encoder Channel 3

ENC_TRIG_INDEX4 Index signal in encoder Channel 4

ENC_TRIG_INDEX5 Index signal in encoder Channel 5

ENC_TRIG_INDEX6 Index signal in encoder Channel 6

ENC_TRIG_INDEX7 Index signal in encoder Channel 7

ENC_TRIG_OTP0 Interrupt request from local input connection OT0+

ENC_TRIG_OTP1 Interrupt request from local input connection OT1+

ENC_TRIG_OTP2 Interrupt request from local input connection OT2+

ENC_TRIG_OTP3 Interrupt request from local input connection OT3+

ENC_TRIG_OTP4 Interrupt request from local input connection OT4+

ENC_TRIG_OTP5 Interrupt request from local input connection OT5+

ENC_TRIG_OTP6 Interrupt request from local input connection OT6+

ENC_TRIG_OTP7 Interrupt request from local input connection OT7+

ENC_TRIG_OTN0 Interrupt request from local input connection OT0-

ENC_TRIG_OTN1 Interrupt request from local input connection OT1-

ENC_TRIG_OTN2 Interrupt request from local input connection OT2-

ENC_TRIG_OTN3 Interrupt request from local input connection OT3-

ENC_TRIG_OTN4 Interrupt request from local input connection OT4-

ENC_TRIG_OTN5 Interrupt request from local input connection OT5-

ENC_TRIG_OTN6 Interrupt request from local input connection OT6-

ENC_TRIG_OTN7 Interrupt request from local input connection OT7-

Using

 IMP Series Motion Control Command Library User Manual

80

MCC_SetENCTriggerSource(ENC_TRIG_INDEX0 | ENC_TRIG_OTP0, 0, 0)

means that when the encoder Channel 0 index is input or the positive direction

limit of Channel 0 is triggered, the encoder count will be recorded in the latched register

of Channel 0 in Card 0.

Step 2: Use MCC_SetENCLatchType() to set the count latch mode

After completing Step 1, use MCC_SetENCLatchType() to set the latch count

mode. The selectable modes include:

ENC_TRIG_FIRST The count is immediately latched and changes no more when the

first trigger criterion is met.

ENC_TRIG_LAST The latched count is updated unlimited times when the trigger

criteria are met.

Step 3: Use MCC_GetENCLatchValue() to obtain the record in the latched

register

The MCCL is not equipped with the command that can be used to identify if the

record in the latched register has been updated. However, all trigger sources that can

update the latched register record are capable of triggering the ISR as well. Users can

use this function to identify that the record has been updated and use

MCC_GetENCLatchValue() to obtain the updated record. For more details, please refer

to “IMP Series Motion Control Command Library Examples Manual”.

2.10.3 Encoder Count Triggered Interrupt Service Routine

The “encoder count triggered interrupt service routine” function provided in the

MCCL can set the comparative value for encoder channels 0 to 7; after the function has

been enabled for the selected channel, the user-customizable ISR will be called

automatically when the given channel count equals the set comparative value. The

procedure of using “encoder count triggered interrupt service routine” is detailed below:

 IMP Series Motion Control Command Library User Manual

81

Step 1: Use MCC_SetENCRoutine() to serially connect the customized ISR

First, the ISR and routine declaration must be customized following the definitions

below:

typedef void(_stdcall *ENCISR)(ENCINT*)

For example, the customized command can be designed as follows:

stdcall MyENCFunction(ENCINT *pstINTSource)

{

// determine whether the routine was triggered because the count of encoder

Channel 0 equals the comparative value

if (pstINTSource->COMP0)

{

 // handling procedure when the comparative value conditions of Channel 0 are

met

}

// determine whether the routine was triggered because the count of encoder

Channel 1 equals the comparative value

if (pstINTSource->COMP1)

{

// handling procedure when the comparative value conditions of Channel 1

are met

}

// determine whether the routine was triggered because the count of encoder

Channel 2 equals the comparative value

if (pstINTSource->COMP2)

{

// handling procedure when the comparative value conditions of Channel 2

are met

 IMP Series Motion Control Command Library User Manual

82

}

// determine whether the routine was triggered because the count of encoder

Channel 3 equals the comparative value

if (pstINTSource->COMP3)

{

// handling procedure when the comparative value conditions of Channel 3

are met

}

// determine whether the routine was triggered because the count of encoder

Channel 4 equals the comparative value

if (pstINTSource->COMP4)

{

// handling procedure when the comparative value conditions of Channel 4

are met

}

// determine whether the routine was triggered because the count of encoder

Channel 5 equals the comparative value

if (pstINTSource->COMP5)

{

// handling procedure when the comparative value conditions of Channel 5

are met

}

// determine whether the routine was triggered because the count of encoder

Channel 6 equals the comparative value

if (pstINTSource->COMP6)

{

// handling procedure when the comparative value conditions of Channel 6

are met

}

 IMP Series Motion Control Command Library User Manual

83

// determine whether the routine was triggered because the count of encoder

Channel 7 equals the comparative value

if (pstINTSource->COMP7)

{

// handling procedure when the comparative value conditions of Channel 7

are met

}

}

A routine such as “else if (pstINTSource->COMP1)” cannot be used, because

“pstINTSource->COMP0” and “pstINTSource->COMP1” may not be equal to 0

simultaneously.

Later, use MCC_SetENCRoutine (MyENCFunction) to serially connect to the

customized ISR. When the ISR is triggered during execution, the system can use the

pstINTSource parameter, declared as ENCINT*,to determine which trigger criterion

was satisfied when the routine was called. The definition of ENCINT is as follows:

typedef struct _ENC_INT

{

BYTE COMP0;

BYTE COMP1;

BYTE COMP2;

BYTE COMP3;

BYTE COMP4;

BYTE COMP5;

BYTE COMP6;

BYTE COMP7;

BYTE INDEX0;

BYTE INDEX1;

BYTE INDEX2;

BYTE INDEX3;

BYTE INDEX4;

 IMP Series Motion Control Command Library User Manual

84

BYTE INDEX5;

BYTE INDEX6;

BYTE INDEX7;

} ENCINT;

If the ENCINT field value does not equal 0, the reasons for the customized routine

call, by field value, are presented below:

COMP0 The count of encoder Channel 0 equals the set comparative value

COMP1 The count of encoder Channel 1 equals the set comparative value

COMP2 The count of encoder Channel 2 equals the set comparative value

COMP3 The count of encoder Channel 3 equals the set comparative value

COMP4 The count of encoder Channel 4 equals the set comparative value

COMP5 The count of encoder Channel 5 equals the set comparative value

COMP6 The count of encoder Channel 6 equals the set comparative value

COMP7 The count of encoder Channel 7 equals the set comparative value

INDEX0 Triggered by the index signal of encoder Channel 0

INDEX1 Triggered by the index signal of encoder Channel 1

INDEX2 Triggered by the index signal of encoder Channel 2

INDEX3 Triggered by the index signal of encoder Channel 3

INDEX4 Triggered by the index signal of encoder Channel 4

INDEX5 Triggered by the index signal of encoder Channel 5

INDEX6 Triggered by the index signal of encoder Channel 6

INDEX7 Triggered by the index signal of encoder Channel 7

Step 2: Use MCC_SetENCCompValue() to set the encoder count comparative

value for the indicated channel

Step 3: Use MCC_EnableENCCompTrigger() to enable the“ encoder count

triggered interrupt service routine” function for the indicated channel.

MCC_DisableENCCompTrigger() can be used to disable this function for the

indicated channel.

 IMP Series Motion Control Command Library User Manual

85

2.10.4 Encoder Index Triggered Interrupt Service Routine

The “encoder index triggered interrupt service routine” function provided in the

MCCL can trigger the ISR by using index signals of encoder channels 0 to 7. The

procedure for using “encoder index triggered interrupt service routine” function is

detailed below:

Step 1: Use MCC_SetENCRoutine() to serially connect to the customized

interrupt service routine

If MCC_SetENCRoutine() has not been called before, please refer to the previous

description of this step (Section 2.10.3, Step 1); if MCC_SetENCRoutine() has been

called before, simply determine which channel triggered the function using the “index

signal input” fields (INDEX0 ~ INDEX7) of pstINTSource in the customized routine.

Please refer to the following example:

stdcall MyENCFunction(ENCINT *pstINTSource)

{

// determine whether the routine was triggered by the index signal of Channel 0

if (pstINTSource->INDEX0)

{

 // handling procedure when the index signal of encoder Channel 0 is input

}

// determine whether the routine was triggered by the index signal of Channel 1

if (pstINTSource->INDEX1)

{

 // handling procedure when the index signal of encoder Channel 1 is input

}

// determine whether the routine was triggered by the index signal of Channel 2

if (pstINTSource->INDEX2)

{

 // handling procedure when the index signal of encoder Channel 2 is input

 IMP Series Motion Control Command Library User Manual

86

}

// determine whether the routine was triggered by the index signal of Channel 3

if (pstINTSource->INDEX3)

{

 // handling procedure when the index signal of encoder Channel 3 is input

}

// determine whether the routine was triggered by the index signal of Channel 4

if (pstINTSource->INDEX4)

{

 // handling procedure when the index signal of encoder Channel 4 is input

}

// determine whether the routine was triggered by the index signal of Channel 5

if (pstINTSource->INDEX5)

{

 // handling procedure when the index signal of encoder Channel 5 is input

}

// determine whether the routine was triggered by the index signal of Channel 6

if (pstINTSource->INDEX6)

{

 // handling procedure when the index signal of encoder Channel 6 is input

}

// determine whether the routine was triggered by the index signal of Channel 7

if (pstINTSource->INDEX7)

{

 // handling procedure when the index signal of encoder Channel 7 is input

}

}

 IMP Series Motion Control Command Library User Manual

87

Step 2: Use MCC_EnableENCIndexTrigger() to activate encoder index triggered

function for the indicated channel. MCC_DisableENCIndexTrigger() can be used

to disable this function.

This function can work with “encoder count latch” to obtain the count when the

index signal is input. (For “encoder count latch” function, please refer to the description

in the previous section). MCC_GetENCIndexStatus() can be used to identify whether

the current motor position is on the encoder index position.

 IMP Series Motion Control Command Library User Manual

88

2.11 Analog Voltage Output (D/A Converter，DAC) Control

If motion axes that are required to output voltage have been programmed in

mechanism parameters as V Command motion axes (i.e. nCommandMode is set as

OCM_VOLTAGE), it is not possible to use any of the following commands related to

DAC. An incorrect return value will be obtained by calling these commands. Users are

advised to pay extra attention to this.

2.11.1 General Control

After activating with the MCCL by MCC_InitSystem(), MCC_SetDACOutput()

can be used to output analog voltage. Voltage output range is -10V to +10V.

Meanwhile, MCC_StopDACConv() can be used to disable analog voltage output

function and MCC_StartDACConv() can be used to restart this function.

2.11.2 Output Voltage Hardware Trigger Mode

The “output voltage hardware trigger mode” provided in the MCCL can program

one output voltage value for the selected DAC channel in advance and can trigger this

preset voltage by a specific hardware trigger source. This function will be directly

handled by the hardware after programming to ensure the best instantaneousness. The

procedure of using “output voltage hardware trigger mode” is detailed below:

Step 1: Use MCC_SetDACTriggerOutput() to program the output voltage value

in advance

For example, use MCC_SetDACTriggerOutput (2.0, 1, 0) to program DAC

Channel 1 of Card 0 to output 2.0V in advance.

Step 2: Use MCC_SetDACTriggerSource() to set the hardware trigger source

Possible hardware trigger sources are defined below; it is also possible to set

multiple trigger conditions at the same time. Please note that all these hardware trigger

sources are required to be from the same motion control card.

 IMP Series Motion Control Command Library User Manual

89

1. DAC_TRIG_ENC0 Specific count in encoder Channel 0

2. DAC_TRIG_ENC1 Specific count in encoder Channel 1

3. DAC_TRIG_ENC2 Specific count in encoder Channel 2

4. DAC_TRIG_ENC3 Specific count in encoder Channel 3

5. DAC_TRIG_ENC4 Specific count in encoder Channel 4

6. DAC_TRIG_ENC5 Specific count in encoder Channel 5

7. DAC_TRIG_ENC6 Specific count in encoder Channel 6

8. DAC_TRIG_ENC7 Specific count in encoder Channel 7

ISRs related to these hardware trigger sources should also be enabled when setting

the hardware trigger source so that these sources can trigger the output voltage. For

example, when using MCC_SetDACTriggerSource(DAC_TRIG_ENC0, 1, 2) to set the

specific count of encoder Channel 0 in Card 2 as the DAC hardware trigger source of

Channel 1 in Card 2, it is required to enable the “encoder count triggered interrupt

service routine” function of Channel 0, which means to use MCC_SetENCCompValue()

and MCC_EnableENCCompTrigger() to enable the encoder ISR function of Channel

0. For details of this function, please refer to section 2.10.3-”Encoder Count Triggered

Interrupt Service Routine”. Similarly, when setting the hardware trigger source to be

the signal of limit switch, it is also required to use MCC_SetLIOTriggerType() and

MCC_EnableLIOTrigger() to activate input signal triggered interrupt service routine.

For details of this function, please refer to the section 2.9.3-”Input Signal Triggered

Service Routine”.

Step 3: Use MCC_EnableDACTriggerMode() to enable this function and

MCC_DisableDACTriggerMode() to disable this function.

 IMP Series Motion Control Command Library User Manual

90

2.12 Analog voltage input (A/D Converter, ADC) Control

2.12.1 Initial Settings

For IMPs, it is necessary to complete following steps before using the “analog

voltage input control” function.

Step 1: Use MCC_SetADCConvType() to set the voltage converter type

(1) MCC_SetADCConvType (ADC_TYPE_BIP): use bipolar converter type and -

5V to 5V readable voltage range.

(2) MCC_SetADCConvType (ADC_TYPE_UNI) :use unipolar converter type and

0V to 10V readable voltage range.

Step 2: Use MCC_SetADCConvMode() to set the voltage converter mode

(1) MCC_SetADCConvMode (ADC_MODE_FREE):conduct continuous voltage

acquisition. The voltage acquired will vary based on different input voltages. This

command is required to be used in combination with MCC_EnableADCConvChannel().

For details of this function, please refer to section 2.12.2- “Continuous Voltage

Conversion”.

(2) MCC_SetADCConvMode (ADC_MODE_SINGLE): conduct single voltage

acquisition; unless MCC_StartADCConv() is called again, the value acquired will not

change. This command is required to be used in combination with

MCC_SetADCSingleChannel(). For details of this function, please refer to section

2.12.3- “Single Channel Voltage Conversion”.

2.12.2 Continuous Voltage Conversion

After completing the initial settings mentioned previously, follow the steps below

to acquire the input voltage of a specific channel:

Step 1: Use MCC_SetADCConvMode(ADC_MODE_FREE)

Step 2: Use MCC_EnableADCConvChannel() to allow the selected channel to

 IMP Series Motion Control Command Library User Manual

91

input analog voltage

A maximum of eight A/D channels are allowed to input analog voltage

simultaneously. The voltage is only converted in the permitted input channels.

MCC_DisableADCConvChannel() can be used to inhibit the selected channel to input

analog voltage.

Step 3: Use MCC_StartADCConv() to activate and MCC_StopADCConv() to

disable the analog voltage input function.

Step 4: Use MCC_GetADCInput() to obtain the voltage value

2.12.3 Single Channel Voltage Conversion

The MCC_SetADCSingleChannel() provided in the MCCL can select a specific

channel to be the only one allowed to convert voltage while conversion function of

other channels are disabled.

Use MCC_SetADCSingleChannel() to select the channel and call

MCC_SetADCConvMode (ADC_MODE_SINGLE) to use the single conversion mode.

This selected channel will convert the voltage once after calling

MCC_StartADCConv(). There will be no more conversion after it is completed. The

user must call MCC_StartADCConv() again to conduct the next single conversion.

During the conversion period (around 8µs), MCC_GetADCWorkStatus() can be used

to confirm if the action is completed. After the conversion completion is confirmed,

MCC_GetADCInput() can be used to obtain the input voltage.

2.12.4 Specific Voltage Triggered Interrupt Service Routine

The “specific voltage triggered interrupt service routine” function provided in the

MCCL can set the voltage comparative value of ADC channel. When this function is

enabled and the trigger conditions are met, the user-customizable ISR will be

automatically called. The procedure of using “specific voltage triggered interrupt

service routine” is detailed below:

 IMP Series Motion Control Command Library User Manual

92

Step 1: Use MCC_SetADCRoutine() to serially connect the customized interrupt

service routine

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall *ADCISR)(ADCINT*)

For example, the customized command can be designed as follows:

_stdcall MyADCFunction(ADCINT *pstINTSource)

{

// determine whether the routine was triggered because the voltage value in ADC

Channel 0 satisfied the comparative criteria

if (pstINTSource->COMP0)

{

 // handling procedure when the comparative value conditions ofChannel 0 are

met

}

// determine whether the routine was triggered because the voltage value in ADC

Channel 1 satisfied the comparative criteria

if (pstINTSource->COMP1)

{

// handling procedure when the comparative value conditions of Channel 1

are met

}

}

A routine such as “else if (pstINTSource->COMP1)” cannot be used, because

pstINTSource->COMP0 and pstINTSource->COMP1 may not be 0 simultaneously.

Later, use MCC_SetADCRoutine(MyADCFunction) to serially connect the

customized ISR. When the ISR is triggered during execution, the system can use the

pstINTSource parameter declared as ADCINT in the customized routine to determine

 IMP Series Motion Control Command Library User Manual

93

which trigger criterion was satisfied when the customized routine was called. The

definition of ADCINT is as follows:

typedef struct _ADC_INT

{

BYTE COMP0;

BYTE COMP1;

BYTE COMP2;

BYTE COMP3;

BYTE COMP4;

BYTE COMP5;

BYTE COMP6;

BYTE COMP7;

BYTE CONV;

BYTE TAG;

} ADCINT;

If the ADCINT field value does not equal 0, the reasons for the customized routine call,

by a field value, are presented below:

COMP0 ADC Channel 0 voltage satisfies the trigger criteria

COMP1 ADC Channel 1 voltage satisfies the trigger criteria

COMP2 ADC Channel 2 voltage satisfies the trigger criteria

COMP3 ADC Channel 3 voltage satisfies the trigger criteria

COMP4 ADC Channel 4 voltage satisfies the trigger criteria

COMP5 ADC Channel 5 voltage satisfies the trigger criteria

COMP6 ADC Channel 6 voltage satisfies the trigger criteria

COMP7 ADC Channel 7 voltage satisfies the trigger criteria

CONV Any ADC channel completes voltage conversion

TAG ADC tagged channel completes voltage conversion (only one specific

channel is allowed to be tagged at one time)

Step 2: Refer to the previous description to complete “initial settings”

 IMP Series Motion Control Command Library User Manual

94

Step 3: Use MCC_SetADCCompValue() to set the comparative value of voltage

comparator

Step 4: Use MCC_SetADCCompMask() to set the voltage mask bit

When the input voltage is compared with the set comparative value, the three

smallest bits can be masked by comparison to reduce the sensitivity of the comparator

and prevent interrupts resulting from input voltage vibrations. The parameters that can

be set by this command include:

ADC_MASK_NO No ADC mask bit

ADC_MASK_BIT1 Use 1 mask bit

ADC_MASK_BIT2 Use 2 mask bits

ADC_MASK_BIT3 Use 3 mask bits

Step 5: Use MCC_SetADCCompType() to set the voltage comparison mode

The voltage comparison mode is used to set the conditions for triggering interrupts. The

voltage comparison modes can be set as follows:

ADC_COMP_RISE The ADC input voltage passes the comparison value while

increasing.

ADC_COMP_FALL The ADC input voltage passes the comparison value while

decreasing.

ADC_COMP_LEVEL The ADC input voltage passes the comparison value while

being changed.

Step 6: Use MCC_EnableADCCompTrigger() to activate this function

Step 7: Use in combination with “continuous voltage conversion” or “single

channel voltage conversion” function

 IMP Series Motion Control Command Library User Manual

95

2.12.5 Voltage Conversion Completion Triggered Interrupt Service Routine

The two types of “voltage conversion completion triggered interrupt service routine”

provided is the MCCL are detailed below:

I. The interrupt service routine is triggered after any ADC channel completes voltage

conversion. The procedure of using this function is as follows:

Step1: Use MCC_SetADCRoutine() to serially connect the customized

interrupt service routine

If MCC_SetADCRoutine() has not been called, please refer to the previous

description of this step; if MCC_SetADCRoutine() has been called, simply add the

parameter pstINTSource “voltage conversion completion” field (CONV) determination

to the customized routine. Please refer to the following example:

_stdcall MyADCFunction(ADCINT *pstINTSource)

{

// determine whether the routine was triggered because the voltage conversion

completion of any ADC channel

if (pstINTSource->CONV)

{

 // handling procedure when any channel completes voltage conversion

}

}

Step2: Use MCC_EnableADCConvTrigger() to enable and

MCC_DisableADCConvTrigger() to disable this function.

II. The interrupt service routine is triggered when ADC tagged channel completes

voltage conversion. The procedure of using this function is as follows:

Step 1: Use MCC_SetADCRoutine() to serially connect the customized interrupt

 IMP Series Motion Control Command Library User Manual

96

service routine

If MCC_SetADCRoutine() has not been called before, please refer to the previous

description of this step (Section 2.12.4, Step 1); if MCC_SetADCRoutine() has been

called before, simply determine which channel triggered the function using the “tagged

channel voltage conversion completion” field (TAG) of pstINTSource in the customized

routine. Please refer to the following example:

_stdcall MyADCFunction(ADCINT *pstINTSource)

{

// determine whether the routine was triggered because the ADC tagged channel

completes voltage conversion

if (pstINTSource->TAG)

{

 // handling procedure when the tagged channel completes voltage conversion

}

}

Step 2: Use MCC_SetADCTagChannel() to select the tagged channel

Step 3: Use MCC_EnableADCTagTrigger() to enable and

MCC_DisableADCTagTrigger() to disable this function.

 IMP Series Motion Control Command Library User Manual

97

2.13 Time and Watchdog Control

2.13.1 Timer Triggered Interrupt Service Routine

The length of the 32-bit timer on the IMP can be set by using the MCCL. When

the timer function is activated and the timing is completed (i.e., the value of timer equals

the set value), it will trigger the user-customizable ISR and restart timing. This process

will continue until this function is disabled. The procedure of using “timer triggered

interrupt service routine” is detailed below:

Step 1: Use MCC_SetTMRRoutine() to serially connect the customized interrupt

service routine

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall *TMRISR)(TMRINT*)

Call MCC_SetTMRRoutine() and in the customized routine use the “timing ends” field

(TIMER) of pstINTSource to determine whether the routine was triggered. Please refer

to the following example:

stdcall MyTMRFunction(TMRINT *pstINTSource)

{

// determine whether the routine was triggered because the timer ends

if (pstINTSource->TIMER)

{

 // handling procedure when the timer ends

}

}

Step 2: Use MCC_SetTimer() to set the timer in the unit of System Clock (10ns)

Step 3: Use MCC_EnableTimerTrigger() to enable the “timer triggered interrupt

 IMP Series Motion Control Command Library User Manual

98

service routine” function and MCC_DisableTimerTrigger() to disable the function.

Step 4: Use MCC_EnableTimer() to enable and MCC_DisableTimer() to disable

the timing function.

2.13.2 Watchdog Control

After the user has enabled the watchdog function, it is necessary to use

MCC_RefreshWatchDogTimer() to clear the watchdog timer before the timer finishes

(i.e., before the watchdog timer value equals the set comparative value). Otherwise,

once the watchdog timer value equals to the set comparative value, the hardware will

be reset. The procedure of using the watchdog is as follows:

Step 1: Use MCC_SetTimer() to set the core timer; the timing period is a 32-bit

numerical value and the unit is System Clock (10ns).

Step 2: MCC_SetWatchDogTimer() set the watchdog timer period

The watchdog timer is a 32-bit numerical value and uses the time of the core timer

as the time base. In other words, if the following programming code is used:

MCC_SetTimer(1000000, 0);

MCC_SetWatchDogTimer(2000, 0);

At this point, it means that the comparison value of Card 0 watchdog timer is set

as (10ns × 1000000)× 2000 = 20s.

Step 3: Use MCC_SetWatchDogResetPeriod() to set the reset signal duration

This command can program the signal duration of the watchdog generated

hardware reset (32-bit numerical value with the maximum of 4294967296; unit: system

clock (10ns)).

 IMP Series Motion Control Command Library User Manual

99

Step 4: Use MCC_EnableTimer() to enable the timer function

Step 5: MCC_RefreshWatchDogTimer() must be used to clear the watchdog

timer content before the watchdog timer ends.

The user can combine this function with the “timer triggered interrupt service

routine” function. The user will be alerted before the watchdog resets the hardware and

conduct the necessary handling within the timer ISR.

 IMP Series Motion Control Command Library User Manual

100

2.14 Remote I/O Control

2.14.1 Initial Settings

Each IMP consists of one Remote I/O control card plug referred to as Remote I/O

Master which is capable of controlling 32 Remote I/O control cards (index IMP-ARIO;

called as Remote I/O Slave). Each Remote I/O control card provides 16 output and 16

input connections as shown in the following figure:

Fig. 2.14.1 Remote Master and Slave

Use MCC_EnableARIOSlaveControl() to enable the data transmission function.

The example is as follows:

MCC_EnableARIOSlaveControl(WORD wSet, WORD wSlave, WORD

wCardIndex=0);

2.14.2 Setting and Acquiring I/O Status

After finishing initial settings, MCC_GetARIOInputValue() can be used to

acquire the input signal status and MCC_SetARIOOutputValue() can be used to set the

output signal status. The prototype of MCC_GetARIOInputValue() is as follows:

MCC_GetARIOInputValue(WORD* pwValue,

WORD wSet,

WORD wSlave,

IMP-2

16 In / 16Out

ttttgoutoutOU

T
I/O Devices

IMP-ARIO

. . . 32 SLAVES

Total: 1024 I /O

IMP-ARIO

16 IN / 16Out

OutOutOUT
I/O Devices

9 P in

D-s ub

9 P in

D-s ub

 IMP Series Motion Control Command Library User Manual

101

WORD wCardIndex);

The Remote I/O acquisition function can acquire the statuses of 16 slave input

connections. Bit 0 to bit 15 in *pwValue store the statuses of Input 0 to Input 15

separately. Parameter wSet currently does not have any usage and parameter wSlave is

used to indicate the slave to be acquired by Remote IO control card.

Remote I/O written function can set up to 16 slave connection output statuses.

Therefore, the usage of MCC_SetARIOOutputValue() is similar to

MCC_GetARIOInputValue(); the statuses of 16 output connections of the indicated

group must also be set whenever setting the output connection status. The prototype of

MCC_SetARIOOutputValue() is as follows:

MCC_SetARIOOutputValue(WORD wValue,

WORD wSet,

WORD wSlave,

WORD wCardIndex);

where the statuses of 16 output connections are indicated by wValue

 IMP Series Motion Control Command Library User Manual

102

3. A+ PC Mode Development Environment

3.1 Using Visual C++

Include Files

 MCCL.h

 MCCL_Fun.h

Import Library (Users must add this file to the project)

 MCCLPCI_IMP.lib (for A
+

PC mode)

The following is the process for adding the necessary import library

MCCLPCI_IMP.lib into the project when using an IMP and implementing VC++ as a

development tool:

STEP 1:

Use [Add To Project] under [Project]

Step 2:

Select MCCLPCI_IMP.lib and add to project

 IMP Series Motion Control Command Library User Manual

103

3.2 Using Visual Basic

Include Files

 MCCLPCI_IMP.bas (for A
+

PC mode)

The following is the process of adding the necessary import module

MCCLPCI_IMP.bas into the project when using an IMP and implementing VB as a

development tool:

Step 1

Use [Add Module] under [Project]

Step 2

Select MCCLPCI_IMP.bas and add to the module

